欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2020, Vol. 20 ›› Issue (5): 557-568.DOI: 10.12034/j.issn.1009-606X.219245

• 过程与工艺 • 上一篇    下一篇

提升管内颗粒浓度梯度力的特性

赵亚飞, 范怡平*, 吕 涵, 赵 洋   

  1. 中国石油大学(北京)机械与储运工程学院,北京 102249
  • 收稿日期:2019-06-27 修回日期:2019-09-26 出版日期:2020-05-22 发布日期:2020-05-18
  • 通讯作者: 赵亚飞 971377268@qq.com

Characteristics of particle concentration gradient force in riser

Yafei ZHAO, Yiping FAN*, Han Lü, Yang ZHAO   

  1. College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2019-06-27 Revised:2019-09-26 Online:2020-05-22 Published:2020-05-18

摘要: 由于Kutta-Joukowski横向力与浓度梯度力的共同作用,提升管内颗粒沿径向在边壁大量聚集并形成稳定的环?核结构。根据实验数据,分析了颗粒浓度梯度的径向分布特征,考察了不同操作条件下浓度梯度力系数K的分布特性。由Kutta-Joukowski横向力与浓度梯度的关系,提出了浓度梯度力的表达式Fρ=K(dρ/dr)A及浓度梯度力系数K的表达式K=[?ρg(νg?νp)(?v/?r)r]/?dρ/dr+(d2ρ/dr2)r?。提升管内颗粒群受到的浓度梯度力与浓度梯度力系数K有关。浓度梯度力系数K在提升管中心处为0,沿提升管径向呈“N”型分布,随表观气速增加而增加;提升管内充分发展段K的数值明显大于提升管加速区和出口约束区,总结了浓度梯度力系数K的经验关联式。

关键词: Kutta-Joukowski横向力, 浓度梯度力, 浓度梯度力系数, 公式化

Abstract: The particles in the riser are exerted by the Kutta-Joukowski transverse force and the concentration gradient force simultaneously in the radial direction. Thereby a great number of particles gather near the wall, as a result, a stable core-annulus structure occurs. Based on the experimental data, the radial distribution characteristics of the particle concentration gradient were analyzed. In addition, according to the proposed the relationship of the Kutta-Joukowski transverse force to the concentration gradient force, the s of the concentration gradient force, Fρ=K(dρ/dr)A, and that of the concentration gradient force coefficient K=[?ρg(νg?νp)(?v/?r)r]/[dρ/dr+(d2ρ/dr2)r] were presented. The concentration gradient force on the particles in riser was dependent on the concentration gradient force coefficient. Radial profiles of the concentration gradient force coefficient (K) in the riser was given and the influences of operating parameters were investigated. The results showed that the value of the concentration gradient force coefficient was 0 at riser center while the radial distribution assumed the N-profile. The concentration gradient force coefficient increased with the increasing of the superficial gas velocity. The value of the coefficient in the fully developed zone of the riser was significantly higher than that in the acceleration zone as well as the outlet constraint zone. Based on the analysis results, the empirical correlation of K in riser was established.

Key words: Kutta-Joukowski transverse force, concentration gradient force, concentration gradient force coefficient, formulation