欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2020, Vol. 20 ›› Issue (3): 294-301.DOI: 10.12034/j.issn.1009-606X.219232

• 流动与传递 • 上一篇    下一篇

压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟

王 娟1,2*, 李 军1,2, 邹 槊1,2, 何星晨1,2, 万加亿1,2, 周 宇1,2   

  1. 1. 中国石油大学重质油国家重点实验室,北京 102249 2. 过程流体过滤与分离技术北京市重点实验室,北京 102249
  • 收稿日期:2019-06-18 修回日期:2019-07-18 出版日期:2020-03-22 发布日期:2020-03-20
  • 通讯作者: 王娟
  • 基金资助:
    中国石油化工股份有限公司资助项目

Simulation on flow characteristics of spherical convex–concave structure in microchannel of pressure-filtered water electrolyzer

Juan WANG1,2*, Jun LI1,2, Shuo ZOU1,2, Xingchen HE1,2, Jiayi WAN1,2, Yu ZHOU1,2   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China 2. Beijing Key Laboratory of Process Fluid Filtration and Separation, Beijing 102249, China
  • Received:2019-06-18 Revised:2019-07-18 Online:2020-03-22 Published:2020-03-20
  • Contact: WANG Juan

摘要: 压滤式水电解槽是电解水制氢过程中的关键设备,电解槽极板通道内设有球凸?球凹结构,其内部的水流分布直接影响通道内的电解液分布及传热状况,从而影响电解设备的稳定性。为研究压滤式水电解槽极板通道内的流场特性,采用RNG k??湍流模型对电解单元单极室内的流场进行了模拟,分析了流道内的涡旋情况及速度分布均匀性。结果表明,极板通道结构决定了涡旋产生的位置,从而影响流道内的速度分布,随入口流量增大,涡旋强度增大,扰动程度增强;水流速度分布具有对称性,球凸?球凹结构使速度分布具有波动性,且在不同球凸边缘均出现速度峰值;不同流量下流道内沿流动方向的速度分布均匀性指数不同,球凸?球凹结构的扰流作用能改善速度分布均匀性,但不同流量时的改善效果不同。

关键词: 压滤式水电解槽, 球凸-球凹, 微通道, RNG k-ε模型, 涡旋, 流动

Abstract: Pressure-filtered electrolyzer is the key equipment in the process of hydrogen production from water electrolysis. Spherical convex–concave structure is arranged in the microchannel of electrolyzer plate. The distribution of water flow in the microchannel directly affects the distribution of electrolyte and heat transfer, thus affecting the stability of the electrolyzer. In order to study the flow field characteristics in the plate channel of pressure-filtered water electrolyzer, the RNG k?? turbulence model was used to simulate the flow field in the single pole chamber of the electrolytic units, and the eddy generated in the channel and the uniformity of velocity distribution were analyzed. The results showed that the structure of the plate passage determined the location of the eddy, which affected the velocity distribution in the passage. With the increase of the mass flow rate, the intensity of the eddy increased and the disturbance degree increased. The velocity distribution of the flow was symmetrical, and the curve of velocity distribution caused by the spherical convex–concave structure had fluctuation. There were peak velocities at the edge positions of different spherical convex structures. The uniformity index of velocity distribution along the flow direction was different under various flow conditions. The disturbance effect of spherical convex–concave structure could improve the uniformity of velocity distribution, but the improvement effect was different under various flow conditions.

Key words: pressure-filtered water electrolyzer, microchannel, spherical convex-concave, RNG k-&epsilon, model, eddy, flow