Numerical Simulation and Single Factor Influence Analysis of Multi-phase Flow in Copper Top-blown Furnace
Jun PENG1, Zhuo CHEN1*, Sixuan LIU1, Lizhen CHENG2
1. School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China;
2. Tongling Nonferrous Metals Group Holding Co., Ltd., Tongling, Anhui 244000, China
摘要采用VOF模型模拟铜顶吹炉内多相流动,以气含率、熔体平均速度为铜顶吹炉熔炼效果/效率的评价指标,通过单因素分析法研究了喷枪外径、空气流量及浸没深度对熔炼过程的影响,并结合经验生产参数提出了各参数的适宜值. 结果表明,适当增大喷枪空气流量或浸没深度可明显提升气含率和熔体平均速度,获得更高的熔炼效率;适当减小喷枪外径可提升评价指标并获得更佳熔炼效果;各参数适宜值为喷枪外径403~428 mm、喷枪空气流量12000~14000 Nm3/h、喷枪浸没深度225~275 mm.
Abstract:Based on the volume of fluid model, simulation of the multi-phase flow in a copper top-blown furnace was carried out. Taking the gas volume fraction and the average velocity of the melt as the indexes to assess the smelting effort/efficiency of the copper top-blown furnace, influences of three main parameters on the smelting process which were the lance outer diameter, the lance air flux and the lance submerged depth were investigated by single factor analysis method. Appropriate ranges of three main operational parameters were determined by taking the practical production parameter values into consideration. The results showed the appropriate increase of lance submerged depth or air flux can obviously improve gas volume fraction and average velocity of the melt attaining a higher smelting efficiency. Properly decreasing the lance outer diameter can enlarge the assessment indexes and get a better smelting effect. The appropriate ranges of three main parameters were the lance outer diameter of 403~428 mm, the lance air flux of 12000~14000 Nm3/h and the lance submerged depth of 225~275 mm.
彭军 陈卓 刘思璇 程利振. 铜顶吹炉内多相流数值模拟与单因素影响分析[J]. 过程工程学报, 2017, 17(5): 926-935.
Jun PENG Zhuo CHEN Sixuan LIU Lizhen CHENG. Numerical Simulation and Single Factor Influence Analysis of Multi-phase Flow in Copper Top-blown Furnace. Chin. J. Process Eng., 2017, 17(5): 926-935.
[1]付江, 王华.艾萨熔池熔炼的应用与优化[J].工业加热, 2007, 36(1):35-40 [2]Diaz C M, Mackey P J.The copper-cobre series of conferences: a prime forum for active discussion of copper smelting[C]. Proceedings of the Sixth International Copper-Cobre Conference. Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 2007: 3-37. [3]马鹏, 刘发存.铜冶炼闪速熔炼及熔池熔炼技术探讨[J].世界有色金属, 2016, 1(1):89-90 [4]刘志宏.中国铜冶炼节能减排现状与发展[J].有色金属科学与工程, 2015, 5(5):1-12 [5]周萍, 成慰, 马骥, 夏中卫, 廖舟.侧吹气流流动特性实验研究[J].中南大学学报自然科学版, 2016, 47(8):2879-2883 [6]Shui L, Cui Z X, Ma X D, RhamdhaniI M A, Nguyen A, Zhao B J.Mixing phenomena in a bottom blown copper smelter: a water model study[J].Metallurgical and Materials Transactions B, 2015, 3(46):1218-1225 [7]WANG Dong-xing, LIU Yan, ZHANG Zi-mu, SHAO Pin, ZHANG Ting-an.Dimensional analysis of average diameter of bubbles for bottom blown oxygen copper furnace[J].Mathematical Problems in Engineering, 2016, :1-8 [8]熊靓, 王华, 王冲, 王仕博, 杨濮亦, 刘泛函.顶吹两相流影响熔池搅拌效果的水模型实验研究[J].化工进展, 2014, 33(7):1697-1701 [9]杨濮亦, 王冲, 王仕博, 朱道飞, 王华, 刘泛函, 熊靓, 黄梅.顶吹气泡在两相间运动的形变过程对熔池搅拌效果的影响[J].化工进展, 2014, 33(3):617-622 [10]詹树华, 赖朝斌, 萧泽强.侧吹金属熔池内的搅动现象[J].中南大学学报自然科学版, 2003, 34(2):148-151 [11]詹树华, 几种化工及冶金反应器内多相流动传输现象的模拟研究[D].长沙, 中南大学, 2004: 1-144. [12]Zhan S H.Studies on multiPhase flow transport phenomena in several chemieal and metallurgieal reactors [D]. Changsha, Central South University, 2004: 1-144. [13]Nazmul H, Naser J, Brooks G, Reuter M A, Matusewicz R W.Computational fluid dynamics (CFD) investigation of submerged combustion behavior in a tuyere blown slag-fuming furnace[J].Metallurgical and Materials Transactions B, 2012, 43(5):1054-1068 [14]张振扬, 陈 卓, 闫红杰, 刘方侃, 刘 柳, 崔志祥, 申殿邦.富氧底吹熔炼炉内气液两相流动数值模拟[J].中国有色金属学报, 2012, 22(6):1826-1834 [15]闫红杰, 刘方侃, 张振杨, 高 强, 刘 柳, 崔志祥, 申殿邦.喷枪布置方式对熔池熔炼过程的影响[J].中国有色金属学报, 2012, 22(8):2393-2400 [16]Solórzano-López J, Zenit R, Ramírez-Argáez M A.Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface[J].Applied Mathematical Modelling, 2011, 35(10):4991-5005 [17]Nazmul H, Naser J, Brooks G, Reuter M A, Matusewicz R W.A Computational fluid dynamic modeling study of slag fuming in top submerged lance smelting furnace[C]// Proceedings of the World Congress on Engineering. London: IAENG, 2010: 39?44. [18]Nazmul H, Naser J, Brooks G, Reuter M A, Matusewicz R W.CFD modeling of swirl and nonswirl gas injections into liquid baths using top submerged lances[J].Metallurgical and Materials Transactions B, 2010, 41(1):35-50 [19]LI Y, LOU T, ZHU M Y.Numerical simulation of gas and liquid flow in steelmaking converter with top and bottom combined blowing[J].Ironmaking & Steelmaking, 2013, 7(40):505-514 [20]HE Chun-lai, ZHU Rong, DONG Kai, et al.Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF[J].Journal of Iron and Steel Research, International, 2011, 18(9):13-20 [21]娄文涛, 张邦琪, 施哲.艾萨炉水模型内气泡运动的模拟[J]. 中国有色冶金. 2010(01): 48-53.[J].中国有色冶金, 2010, 39(1):48-53 [22]张信昭.喷粉冶金基本原理[M]. 北京: 冶金工业出版社, 1988: 89-109.