参考文献:
[1] Kroll W J. The production of ductile titanium[J]. Journal of The Electrochemical Society, 1940, 78: 35-47
[2] Hunter M A. Metallic titanium[J]. Journal of the American Chemistry Society, 1910, 32(3): 330-336
[3] Nickels L. Kroll process alternative emergies[J]. Metal Powder Report, 2013, 68(1): 27-29
[4] Zhao K, Wang Y W, Peng J P, Di Y Z, Liu K, Feng N X. Formation of Ti or TiC nanopowder from TiO2 and carbon powders by electrolysis in molten NaCl-KCl[J]. RSC Advance, 2016, 6: 8644-8650
[5] Kim C, Lee C R, Song Y E, Heo J, Choi S M, Lim D H, Cho J, Park C, Jang M, Kim C R. Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chemical Engineering Journal, 2017, 328(15), 703-707
[6] Fang D, Zhang X, Dong M, Xue X. A novel method to remove chromium, vanadium and ammonium from vanadium industrial waste water using a byproduct of magnesium-based wet flue gas desulfurization[J]. Journal of Hazardous Materials, 2017, 336(15): 8-20
[7] 张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006
[8] Grjotheim K, Kvande H, Li Q F, Qiu Z X. Metal production by molten salt electrolysis[M]. Beijing: China University of Mining and Technology Press, 1998
[9] Ginatta M V. Why produce titanium by EW[J]. Journal of the MineralsMetals and Materials Society, 2000, 52(5): 18-20
[10] Ginatta M V, Orsello G. Plant for the electrolytic production of reactive metals in molten salt baths[P]. US patent,4670121, 1987
[11] Cotarta A. Electrochemistry of molten LiCl-KCl-CrCl3and LiCl-KCl-CrCl2 mixtures[J]. Journal of Applied Electrochemistry,1997,27:651-658
[12] Tripathy P K. Electrodeposition of vanadium from a molten salt bath[J]. Journal of Applied Electrochemistry,1996,26:887-890
[13] Suzuki R O, Teranuma K, Ono K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2[J]. Metallurgical and Materials Transaction B, 2003, 34: 287-295
[14] Okabe T H, Oda T, Mitsuda Y. Titanium powder by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 156-163
[15] Jiao S Q, Zhu H M. Novel metallurgical process for titanium production[J]. Journal of Material Research, 2006, 21(9): 2172-2175
[16] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407: 361-364
[17] Chen G Z, Fray D J, Farthing T W. Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride[J]. Metallurgical and Materials Transaction B, 2001, 32(6): 1041-1052
[18] Suzuki R O, Fukui S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis[J]. Materials Transactions, 2004, 45(5): 1665-1671
[19] Suzuki R O. Direct reduction processes for titanium oxide in molten salt[J]. JOM, 2007, 59(1): 68-71
[20] 高玉明.熔盐电解法制取钨粉的试验与研究[D].沈阳:东北大学,1997
[21] 冯乃祥,孙阳,葛贵军.NaCl-Na2WO4-WO3系熔盐电解法制备超细钨粉的研究[J].稀有金属,2001,25(5):374-377
[22] 王旭,廖春发,杨文强,谢泉文.CaWO4-NaCl-CaCl2体系熔盐电解制备钨粉的表征与电化学分析[J].中国有色金属学报,2012,22(5):1482-1487
[23] Martinez A M, Castrillejo Y, Borresen B, Bermejo M R, Vega M. Chemical and electrochemical behavior of chromium in molten chlorides[J].Journal of Electroanalytical Chemistry, 2000,493: 1-7
[24] Propp J H, Laitinen H A. Electrochemical reduction products of chromate (VI) in molten lithium chloride-potassium chloride eutectic[J].Analytical Chemistry, 1969, 41:644-648
[25] Malysheva V V. High temperature electrometallurgical synthesis of tungsten and molybdenum carbides[J]. Russian Journal of Nonferrous Metals, 2011, 52:262-265
[26] Malyshev V V,Hab A I. Electrodepositited molybdenum powders and coatings and their physicalchemical properties (a survey)[J]. Materials Science, 2005,41(1): 25-38
[27] Gasviani N A, Khutsishvili M S, Abazadze M L.Electrochemical reduction of sodium metavanadate in an equimolar KCl-NaCl melt[J]. Russian Journal of Electrochemistry, 2006, 42: 931-937
[28] 王明涌,翁威,王东,王志,公旭中,郭占成. 一种难熔金属含氧酸盐直接电解制备金属的方法. 申请号:201410724949.6
[29] 王明涌, 刘洋, 翁威, 王志, 公旭中, 王东, 郭占成. 一种难熔金属含氧酸盐熔盐电解过程碱回收与熔盐循环方法. ZL201510222433.6
[30] 张燕.钒酸钠结晶及其转化工艺研究[D].北京:北京科技大学,2010
[31] Feng M, Zheng S L, Wang S N, Du H, Zhang Y. Solubility investigations in the quaternary NaOH-Na3VO4-Na2CrO4-H2O system at 40℃and 80 ℃[J]. Fluid Phase Equilibria, 2013, 360: 338-342
[32] Li J C, Guo Z C, Gao J T, Li J W. Evaluation of isothermal separating perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity[J]. Metallurgical and Materials Transaction B, 2014, 45: 1171-1174
[33] Cherginets V L. On studies of oxide solubilities in melts based on alkaline halides[J]. Electrochimica Acta, 1997, 42: 3619-3627
[34] 彭艳.钛酸盐相结构调控及其电化学解离的研究[D].北京:中国科学院过程工程研究所,2017
[35] Kim J W, Lee D N. Electrowinning of tungsten from fused bath composed of calcium chloride, calcium oxide and tundsten oxide[J]. Daehan Hwahak Hwoejee, 1966, 10(1), 32-43
[36] Clark R P, Reinhardt F W. Phase diagram for the ternary system CaCl2-KCl-CaCrO4[J]. Thermochimica Acta, 1976, 14, 113-129
[37] Xiao W, Wang X, Yin H, Zhu H, Mao X, Wang D. Verification and implication of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2[J]. RSC Advance, 2012, 19: 7588-7593
[38] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. One-step electrochemical preparation of metallic vanadium from sodium metavanadate in molten chlorides[J]. International Journal of Refractory Metals and Hard Materials, 2016, 55: 47-53
[39] Nitta K, Nohira T, Hagiwara R, Majima M, Inazawa S. Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt[J]. Electrochimica Acta, 2010, 55: 1278-1281
[40] Gasviani N A, Khutsishvili M S, Abazadze M L.Electrochemical reduction of sodium metavanadate in an equimolar KCl-NaCl melt[J]. Russian Journal of Electrochemistry, 2006, 42: 931-937
[41] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. Mechanism analysis of carbon contamination and the inhibition by an anode structure during soluble K2CrO4 electrolysis in CaCl2-KCl molten salt[J]. Journal of the Electrochemical Society, 2017, 164(12): E360-E366
[42] Weng W, Wang M Y, Gong X Z, Wang Z, Wang D, Guo Z C. Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2-KCl molten salt and its reduction mechanism[J]. Electrochimica Acta, 2016, 212: 162-170
[43] Weng W, Wang M Y, Gong X Z, Wang Z, Guo Z C. Dong Wang. Electrochemical preparation of V2O3 from NaVO3 and its reduction mechanism[J]. Journal of Wuhan University of Technology- MATERIALS SCIENCE EDITION. 2017, 32: 1019-1024
[44] W Weng W, Wang M Y, Gong X Z, Wang Z, Guo Z C. Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis[J]. Chinese Journal of Chemical Engineering, 2016, 24: 671-676
[45] Cherginets V L. On studied of oxide solubilities in melts based on alkaline halides[J]. Electrochimica Acta, 1997, 42: 3619-3627
[46] Yin H, Tang D, Mao X, Xiao W, Wang D. Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries[J]. Journal of Materials Chemistry A, 2015, 29: 15184-15189
[47] Jiao H D, Wang J X, Zhang L, Zhang K, Jiao S Q. Electrochemically depositing titanium(III) ions at liquid tin in a NaCl-KCl melt[J]. RSC Adv, 2015, 5: 62235-62240
[48] Poltorak L, Morakchi K, Herzog G,Walcarius A. Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica[J]. Electrochimica Acta, 2015, 179: 9-15
|