欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2021, Vol. 21 ›› Issue (12): 1403-1418.DOI: 10.12034/j.issn.1009-606X.220423

• 综述 • 上一篇    下一篇

活性氧物种及其检测方法的研究进展

何耀宇1, 江治1*, 上官文峰1, 陈运法2
  

  1. 1. 上海交通大学燃烧与环境技术研究中心,上海 200240 2. 中国科学院过程工程研究所,北京 100190
  • 收稿日期:2020-12-24 修回日期:2021-02-20 出版日期:2021-12-28 发布日期:2022-03-28
  • 通讯作者: 何耀宇 hyy_0530@foxmail.com
  • 基金资助:
    国家自然科学基金;国家重点基础研究发展规划项目

Research progress on reactive oxygen species and its detection methods

Yaoyu HE1,  Zhi JIANG1*,  Wenfeng SHANGGUAN1,  Yunfa CHEN2   

  1. 1. Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China 2. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-12-24 Revised:2021-02-20 Online:2021-12-28 Published:2022-03-28

摘要: 活性氧物种(Reactive Oxygen Species, ROS)是一种具有强反应活性的物质,主要包括超氧阴离子自由基、过氧化氢、单线态氧和羟基自由基等。作为氧化剂的氧气分子较为稳定,需要转化为高反应活性的活性氧物种后才能进一步与其他物质发生反应。在化学反应尤其是催化氧化反应中,活性氧的种类、生成、扩散行为等常常决定着整个反应的进行方向与速率;在生命科学领域,活性氧则参与能量转换、氧平衡等重要生理环节,与衰老、疾病等息息相关。而活性氧因其短寿命、强反应活性等,定性定量测试较为困难。选择合适的检测方式、提高检测的时空准确度,对于多相催化、环境化学、生命科学等领域研究有着重要意义。本工作对活性氧检测方法的基本原理、研究进展,以及在环境、生命领域以及多相催化的应用等方面进行对比与分析,比较各种手段的优缺点及适用范围。并对多相催化中氧物种的模拟及检测手段进行分析,展望了活性氧在催化氧化等领域未来的研究方向。

关键词: 活性氧, 多相催化, 环境化学, 检测方法

Abstract: Reactive oxygen species are kinds of highly reactive substances, including superoxide radicals, hydrogen peroxide, singlet oxygen, and hydroxyl radicals. Oxygen molecules, as oxidants, are more stable and need to be converted to highly reactive species before they can further react with other substances. In chemical reactions, especially catalytic oxidation reactions, the type of reactive oxygen species, its formation, and its diffusion behavior determine the direction and rate of the reaction. In the field of life sciences, reactive oxygen is involved in energy conversion, oxygen balance and other important physiological processes, which are closely related to aging and disease. However, due to its short half-life and strong reactivity, qualitative and quantitative testing of reactive oxygen species is difficult. Choosing suitable detection methods and improving the temporal and spatial accuracy of the detection is important for environmental chemistry and life science research. This work introduces and compares the basic principles, research advances, and applications of reactive oxygen detection methods in environmental and life fields, and compares the advantages, disadvantages, and applicability of various methods. The theoretical calculation and detection of oxygen species in heterogeneous catalysis are also introduced, and the future research direction of reactive oxygen species in catalytic oxidation and other fields is discussed.

Key words: reactive oxygen species, heterogeneous catalysis, environmental chemistry, detection method