欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (7): 943-957.DOI: 10.12034/j.issn.1009-606X.223113

• 新能源产业发展专栏 • 上一篇    下一篇

“双碳”背景下新能源固态电池材料理论设计与电池技术开发进展

徐红杰1,3*, 汪光辉2, 苏钰杰1, 张志高4, 李海通4, 杨中正1, 王雨晨1, 胡林悦1, 曹国钦5
  

  1. 1. 华北水利水电大学材料学院,中德资源环境与地质灾害研究中心,河南 郑州 450046 2. 华电重工股份有限公司,北京 100070 3. 河南省钛基新材料产业研究院,河南 焦作 454191 4. 中国建筑第五工程局有限公司,河南 郑州 450001 5. 河南省金属燃料电池重点实验室,河南 郑州 450000
  • 收稿日期:2023-04-10 修回日期:2023-05-06 出版日期:2023-07-28 发布日期:2023-07-28
  • 通讯作者: 徐红杰 xuhongjie@ncwu.edu.cn
  • 基金资助:
    锂离子电池硫化物固态电解质与正极材料协同设计及其界面机制研究

Theoretical design of new energy solid-state battery materials and development of battery technology under the background of carbon peaking and carbon neutrality

Hongjie XU1,3*,  Guanghui WANG2,  Yujie SU1,  Zhigao ZHANG4,  Haitong LI4,  Zhongzheng YANG1,  Yuchen WANG1,  Linyue HU1,  Guoqin CAO5   

  1. 1. Sino-German Resources Environment and Geo-Hazards Research Center, School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, China 2. Huadian Heavy Industries Co., Ltd., Beijing 100070, China 3. Henan Titanium Based Advanced Materials Industrial Research Institute, Jiaozuo, Henan 454191, China 4. China Construction Fifth Engineering Division Co., Ltd., Zhengzhou, Henan 450001, China 5. Henan Provincial Key Laboratory of Metal Fuel Cell, Zhengzhou, Henan 450000, China
  • Received:2023-04-10 Revised:2023-05-06 Online:2023-07-28 Published:2023-07-28

摘要: 由于可充电锂金属电池(LMBs)具有较高理论能量密度,在便携式电子设备、电动汽车和智能电网等方面有重要应用。以固态电解质和锂金属负极组装的固态电池(ASSBs)具有高安全性,被认为是可提高电池能量密度和有效解决安全问题的一种有前景的电池技术。然而,LMBs在实际实施过程中仍面临许多挑战,如库仑效率低、循环性能差和界面反应复杂等。深入分析ASSBs的物理基础和化学科学问题对电池开发具有重要意义。为了证实和补充实验研究机理,理论计算为探索电池材料及其界面的热力学和动力学行为提供了一种强有力的支撑,为设计综合性能更好的电池奠定了理论基础。本工作论述了理论计算方法在电池关键材料计算中的应用和研究意义;综述了硫化物固态电解质中Li10GeP2S12 (LGPS)及银硫锗矿体系的理论和结构设计思路,包括锂离子的输运机理和扩散路径。分析了新型反钙钛矿Li3OCl和双反钙钛矿Li6OSI2电解质体系的理论设计思路。综述了氧化物固态电解质体系在缺陷调控下锂离子的输运机理。此外,本工作针对新型卤化物电解质体系的理论设计也进行了介绍。介绍了计算材料学在电池材料性能研究中的作用:借助理论手段分析离子传输机制、相稳定性、电压平台、化学和电化学稳定性、界面缓冲层和电极/电解质界面等关键问题;理解原子尺度下的充放电机制,并为电极材料和电解质提供合理的设计策略。总结了固态电解质和ASSBs电极与电解质间界面的理论计算的最新进展。最后,对ASSBs理论计算的不足、挑战和机遇进行了展望。

关键词: 材料理论设计, 锂离子固态电池, 电解质, 界面工程

Abstract: Rechargeable lithium metal batteries (LMBs) have attracted wide attention due to their high theoretical energy density and important applications in portable electronic devices, electric vehicles, and smart grids. However, the implementation of LMBs in practice still faces many challenges, such as low Coulombic efficiency, poor cycle performance, and complex interfacial reactions. An in-depth analysis of the physical basis and chemical science of solid-state batteries is of great significance for battery development. To confirm and supplement the experimental research mechanism, theoretical calculation provides strong support for exploring the thermodynamic and kinetic behavior of battery materials and their interfaces and lays a theoretical foundation for designing batteries with better comprehensive performance. In this review, the theoretical and structural design ideas of the Li10GeP2S12 system and argyrodite system in sulfide solid electrolytes are reviewed, including the transport mechanism and diffusion path of lithium ions. The theoretical design ideas of new anti-perovskite Li3OCl and double anti-perovskite Li6OSI2 electrolyte systems are analyzed. The transport mechanism of Li+ in oxide solid electrolyte systems under defect regulation is reviewed. In addition, the theoretical design of new halide electrolyte systems, and the role of computational materials science in the study of battery material properties are also introduced. The key issues such as ion transport mechanism, phase stability, voltage platform, chemical and electrochemical stability, the interface buffer layer, and electrode/electrolyte interface are analyzed by theoretical methods. Understanding the charge-discharge mechanism at the atomic scale and providing reasonable design strategies for electrode materials and electrolytes.

Key words: theoretical design of materials, lithium ion solid state battery, electrolyte, interface engineering