Chin. J. Process Eng. ›› 2017, Vol. 17 ›› Issue (6): 1109-1118.DOI: 10.12034/j.issn.1009-606X.217144
• Reviews • Next Articles
Mingbo JI1,2, Jianquan LUO1, Xiangrong CHEN1*, Yinhua WAN1
Received:
2017-02-23
Revised:
2017-04-06
Online:
2017-12-20
Published:
2017-12-05
Contact:
Xiang-rong N/AChen xrchen@ipe.ac.cn
吉明波1,2, 罗建泉1, 陈向荣1*, 万印华
通讯作者:
陈向荣 xrchen@ipe.ac.cn
Mingbo JI Jianquan LUO Xiangrong CHEN Yinhua WAN. Recent Advance in Biomimetic Modification of Membranes with Biomolecules and Their Derivatives[J]. Chin. J. Process Eng., 2017, 17(6): 1109-1118.
吉明波 罗建泉 陈向荣 万印华. 生物分子及其衍生物对分离膜的仿生改性研究进展[J]. 过程工程学报, 2017, 17(6): 1109-1118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217144
[1] 刘茉娥等编著, 膜分离技术[M], 北京:化学工业出版社, 1998. [2] 王湛主编, 膜分离技术基础[M], 北京:化学工业出版社, 2006. [3] 徐又一,徐志康等编著, 高分子膜材料[M], 北京:化学工业出版社, 2005. [4] Rana, D., Matsuura, T., Surface modifications for antifouling membranes[J], Chem. Rev., 2010, 110(4):2448-2471. [5] Li, Q., Imbrogno, J., Belfort, G., et al., Making polymeric membranes antifouling via "grafting from" polymerization of zwitterions[J], J. Appl. Polym. Sci., 2015, 132(21):41781. [6] Huang, X., Wang, W., Liu, Y., et al., Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes[J], Chem. Eng. J., 2015, 273:421-429. [7] Jayalakshmi, A., Kim, I.-C., Kwon, Y.-N., Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling[J], RSC Adv., 2015, 5(60):48290-48300. [8] Yue, W.-W., Li, H.-J., Xiang, T., et al., Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility[J], J. Membr. Sci., 2013, 446:79-91. [9] Hu, M.-X., Fang, Y., Xu, Z.-K., Glycosylated membranes: A promising biomimetic material[J], J. Appl. Polym. Sci., 2014, 131(2):39658. [10] Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review[J], Enzyme Microb. Technol., 2004, 35(2):126-139. [11] Rydberg, H.A., Kunze, A., Carlsson, N., et al., Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring[J], Eur. Biophys. J., 2014, 43(6-7):241-253. [12] Wang, Y.-B., Gong, M., Yang, S., et al., Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane[J], J. Membr. Sci., 2014, 452:29-36. [13] Gupta, B., Revagade, N., Hilborn, J., Poly(lactic acid) fiber: An overview[J], Prog. Polym. Sci., 2007, 32(4):455-482. [14] Saeidlou, S., Huneault, M.A., Li, H., et al., Poly(lactic acid) crystallization[J], Prog. Polym. Sci., 2012, 37(12):1657-1677. [15] Moriya, A., Maruyama, T., Ohmukai, Y., et al., Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods[J], J. Membr. Sci., 2009, 342(1):307-312. [16] Park, S., Gildersleeve, J.C., Blixt, O., et al., Carbohydrate microarrays[J], Chem. Soc. Rev., 2013, 42(10):4310-4326. [17] Dai, Z., Wan, L., Xu, Z., Surface glycosylation of polymeric membranes[J], Sci.China Ser. B, 2008, 51(10):901-910. [18] 杜维维, 浅谈壳聚糖及壳聚糖膜[J], 塑料包装, 2013, 23(2):25-28. [19] Dobosz, K.M., Kolewe, K.W., Schiffman, J.D., Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies[J], Front. Microbiol., 2015, 6:196. [20] Linhardt, I.C.a.R.J., Heparin - Protein Interactions[J], Angew. Chem. Int. Ed., 2002, 41(3):390-412. [21] Mizrahy, S., Peer, D., Polysaccharides as building blocks for nanotherapeutics[J], Chem. Soc. Rev., 2012, 41(7):2623-2640. [22] Cheng, C., Nie, S., Li, S., et al., Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors[J], J. Mater. Chem. B, 2013, 1(3):265-275. [23] Virtanen, J.A., Cheng, K.H., Somerharju, P., Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model[J], Proc. Natl. Acad. Sci. U. S. A., 1998, 95(9):4964-4969. [24] Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes[J], Polym. J., 1990, 22(5):355-360. [25] Iwasaki, Y., Ishihara, K., Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces[J], Sci. Technol. Adv. Mat., 2012, 13(6):064101. [26] Wang, M., Yuan, J., Huang, X., et al., Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility[J], Colloids Surf. B. Biointerfaces, 2013, 103:52-58. [27] Shi, Q., Su, Y., Chen, W., et al., Grafting short-chain amino acids onto membrane surfaces to resist protein fouling[J], J. Membr. Sci., 2011, 366(1):398-404. [28] Fang, B., Ling, Q., Zhao, W., et al., Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane[J], J. Membr. Sci., 2009, 329(1):46-55. [29] Matsuda, T., Ohya, S., Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end[J], Langmuir, 2005, 21(21):9660-9665. [30] Fehske, K.J., Muller, W.E., Wollert, U., The Location of Drug-Binding Sites in Human-Serum Albumin[J], Biochem. Pharmacol., 1981, 30(7):687-692. [31] Ulbricht, M., Riedel, M., Ultrafiltration membrane surfaces with grafted polymer 'tentacles': preparation, characterization and application for covalent protein binding[J], Biomaterials, 1998, 19(14):1229-1237. [32] Park K, M.D.F., Cooper S L., Acute surface‐induced thrombosis in the canine ex vivo model Importance of protein composition of the initial monolayer and platelet activation[J], J. Biomed. Mater. Res. A, 1986, 20(5):589-612. [33] Mulzer, S.R., Brash, J.L., Identification of Plasma-Proteins Adsorbed to Hemodialyzers during Clinical Use[J], J. Biomed. Mater. Res., 1989, 23(12):1483-1504. [34] Ulbricht, M., Riedel, M., Marx, U., Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules[J], J. Membr. Sci., 1996, 120(2):239-259. [35] 刘宗光, 屈树新, 翁杰, 聚多巴胺在生物材料表面改性中的应用[J], 化学进展, 2014, 27(2/3):212-219. [36] Dreyer, D.R., Miller, D.J., Freeman, B.D., et al., Perspectives on poly(dopamine)[J], Chem. Sci., 2013, 4(10):3796. [37] 吴夕, 缪., 维生素E和氧化应激在糖尿病中的作用[J], 医学综述, 2013, 18(23):4006-4008. [38] Li, L., Cheng, C., Xiang, T., et al., Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity[J], J. Membr. Sci., 2012, 405:261-274. [39] T, H., Mechanisms in blood coagulation, fibrinolysis and the complement system[M], Cambridge University Press, 1991. [40] He, S., Liu, W., Ye, J., et al., Grafting of oligodeoxynucleotide hairpin onto membrane surface to improve its anti-fouling performance[J], Desalination, 2015, 357:267-274. [41] Cheng, C., Li, S., Zhao, W., et al., The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings[J], J. Membr. Sci., 2012, 417:228-236. [42] Mohan, T., Kargl, R., Tradt, K.E., et al., Antifouling coating of cellulose acetate thin films with polysaccharide multilayers[J], Carbohydr. Polym., 2015, 116:149-158. [43] Gong, Y.K., Liu, L.P., Messersmith, P.B., Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces[J], Macromol. Biosci., 2012, 12(7):979-985. [44] Kazuhiko Ishihara, K.F., Yasuhiko Iwasaki, Nobuo Nakabayashi, Modfication of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization[J], Biomaterials, 1999, 20(17):1545-1551. [45] Han, B., Zhang, D., Shao, Z., et al., Preparation and characterization of cellulose acetate/carboxymethyl cellulose acetate blend ultrafiltration membranes[J], Desalination, 2013, 311:80-89. [46] Chen, Y., Zhang, Y., Zhang, H., et al., Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles[J], Chem. Eng. J., 2013, 228:12-20. [47] 陈向荣, 苏志国, 马光辉, et al., 智能型分离膜研究[J], 化学进展, 2006, 18(9):1218-1224. [48] Xiang, T., Zhang, L.S., Wang, R., et al., Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP[J], J. Colloid Interface Sci., 2014, 432:47-56. [49] Zhao, Y.F., Zhang, P.B., Sun, J., et al., Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive[J], J. Colloid Interface Sci., 2015, 448:380-388. [50] Zhao, Y.-F., Zhu, L.-P., Yi, Z., et al., Zwitterionic hydrogel thin films as antifouling surface layers of polyethersulfone ultrafiltration membranes anchored via reactive copolymer additive[J], J. Membr. Sci., 2014, 470:148-158. [51] Zhang, C., Jin, J., Zhao, J., et al., Functionalized polypropylene non-woven fabric membrane with bovine serum albumin and its hemocompatibility enhancement[J], Colloids Surf. B. Biointerfaces, 2013, 102:45-52. [52] Chen, S.H., Chang, Y., Lee, K.R., et al., Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization[J], Langmuir, 2012, 28(51):17733-17742. [53] Hou, X., Zhang, T., Cao, A., A heparin modified polypropylene non-woven fabric membrane adsorbent for selective removal of low density lipoprotein from plasma[J], Polym. Adv. Technol., 2013, 24(7):660-667. [54] Liu, Y., Zhang, S., Wang, G., The preparation of antifouling ultrafiltration membrane by surface grafting zwitterionic polymer onto poly(arylene ether sulfone) containing hydroxyl groups membrane[J], Desalination, 2013, 316:127-136. [55] Kumar, R., Isloor, A.M., Ismail, A.F., et al., Performance improvement of polysulfone ultrafiltration membrane using N-succinyl chitosan as additive[J], Desalination, 2013, 318:1-8. [56] Dahe, G.J., Teotia, R.S., Kadam, S.S., et al., The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes[J], Biomaterials, 2011, 32(2):352-365. [57] Qian, Y.-C., Ren, N., Huang, X.-J., et al., Glycosylation of Polyphosphazene Nanofibrous Membrane by Click Chemistry for Protein Recognition[J], Macromol. Chem. Phys., 2013, 214(16):1852-1858. [58] Qian Yang , M.-X.H., Zheng-Wei Dai , Jing Tian , and Zhi Kang Xu Fabrication of Glycosylated Surface on Polymer Membrane by UV-Induced Graft Polymerization for Lectin Recognition[J], Langmuir, 2006, 22(22):9345–9349. [59] Huang, X.J., Guduru, D., Xu, Z.K., et al., Immobilization of heparin on polysulfone surface for selective adsorption of low-density lipoprotein (LDL)[J], Acta Biomater., 2010, 6(3):1099-1106. [60] Huang, T., Zhang, M., Cheng, L., et al., A novel polysulfone-based affinity membrane with high hemocompatibility: preparation and endotoxin elimination performance[J], RSC Advances, 2013, 3(48):25982. |
[1] | Shuxian WEI Canhua LI Wenqing MA Lanyue ZHANG Jiamao LI Aiqin MAO Chuan HE Minghui LI Weichang ZHU. Study on the removal mechanism of Zn(II) and Pb(II) by magnetic flake nZVI-Fe3O4 [J]. The Chinese Journal of Process Engineering, 2024, 24(3): 346-359. |
[2] | Qiang YANG Gang WANG Chunshan LI. Surface modification and catalytic performance study of Cu-based carbon dioxide to methanol hydrogenation catalyst [J]. The Chinese Journal of Process Engineering, 2024, 24(10): 1166-1176. |
[3] | Ying XU Xinyi YAO Yonghong SONG Yiping SUN Jingjing ZOU Chunbin GUO. Coal gasification slag modification process and its adsorption performance for Cd2+ [J]. The Chinese Journal of Process Engineering, 2024, 24(1): 47-57. |
[4] | Zhilan ZHANG Cong GAO Liang GUO Xiulai CHEN Wanqing WEI Jing WU Wei SONG Liming LIU. Metabolic engineering of Escherichia coli to produce glutaric acid [J]. The Chinese Journal of Process Engineering, 2023, 23(9): 1340-1350. |
[5] | Pengpeng ZHANG Cheng YANG Hongming LONG Xiangpeng GAO Mingyang LI. Research progress on depression mechanism of chitosan and its derivatives during flotation [J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1150-1160. |
[6] | Miaomiao LI Xiangyun QIU Yanxin YIN Tao ZHANG Zuoqiang DAI. Research progress in modification of layered oxide cathode materials for sodium-ion batteries [J]. The Chinese Journal of Process Engineering, 2023, 23(6): 799-813. |
[7] | Huiqing YIN Shaojie WU Mingyang LI Hongming LONG Songyue WANG Zhixin QIU Xiangpeng GAO. Preparation and adsorption properties of CCS-DETA hydrogel beads for methyl orange [J]. The Chinese Journal of Process Engineering, 2023, 23(4): 590-601. |
[8] | Cheng HAN Shaojie WU Chaoyang WU Mingyang LI Hongming LONG Xiangpeng GAO. Research progress on sodium storage mechanism and performance of anode materials for sodium-ion batteries [J]. The Chinese Journal of Process Engineering, 2023, 23(2): 173-187. |
[9] | Zhengde WANG Kaixiong GAO Bin ZHANG. Application of low-temperature plasma in surface modification of electrochemical energy storage devices [J]. The Chinese Journal of Process Engineering, 2022, 22(9): 1159-1168. |
[10] | Xiaoteng ZHAO Xintao ZHOU Zhongqiu LUO Yu WEI Xiong LAN Yan LU. Research progress on the adsorption properties and mechanism of titanium dioxide to common dyes [J]. The Chinese Journal of Process Engineering, 2022, 22(9): 1169-1180. |
[11] | Runping TAO Weiqiang DONG Qingsong HU Jing ZHU Zhixin WANG Yiqun XU. Rational construction and adsorption properties of Brij30/β-FeOOH/GO composite for tetracycline hydrochloride [J]. The Chinese Journal of Process Engineering, 2022, 22(7): 979-988. |
[12] | Bang XIAO Qing CAO Peiyong MA Hailin BI Pengcheng LI. The influence mechanism of hydroxyl modification on the toluene adsorption by activated carbon based on molecular dynamics simulation [J]. The Chinese Journal of Process Engineering, 2022, 22(5): 660-670. |
[13] | Mingzhe LI Shuhua MA Jianbing WANG Xiaohui WANG Tongyu YAO Chenxu LIU. The improvement effect of modified fly ash on the physical properties of sandy soil [J]. The Chinese Journal of Process Engineering, 2022, 22(2): 204-213. |
[14] | Rui LIANG Mingyang LI Xiangpeng GAO Xiankun YU Xiong TONG Hongming LONG. Research progress on photocatalytic treatment of residual xanthate in mineral processing wastewater and improvement of degradation efficiency [J]. The Chinese Journal of Process Engineering, 2022, 22(1): 1-13. |
[15] | Yue MA Xintao ZHOU Jing HUANG Zhongqiu LUO Yizhong FU Weihong MU Luxing WANG Zhoujun SHAO. Research status of mineral admixtures on properties and mechanism of magnesium phosphate cement [J]. The Chinese Journal of Process Engineering, 2021, 21(6): 629-638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||