[1] Goldstein R J, Eckert E R G, Ibele W E, et al. Heat transfer — a review of 2000 literature [J]. Int. J. Heat Mass Transfer, 2002, 45(14): 2853-2957.
[2] Lei Y G, He Y L, Tian L T, et al. Hydrodynamics and heat transfer characteristics of a novel heat exchanger with delta-winglet vortex generators [J]. Chem. Eng. Sci., 2010, 65(5): 1551-1562.
[3] Li J, Cao W, Chen G. The heat transfer coefficient of new construction — Brick masonry with fly ash blocks [J]. Energy, 2015, 86: 240-246.
[4] Babu B V, Munawar S A. Differential evolution strategies for optimal design of shell?and?tube heat exchangers [J]. Chem. Eng. Sci., 2007, 62(14): 3720-3739.
[5] Chen G, Yang X, Lu Y, et al. Heat transfer intensification and scaling mitigation in bubbling-enhanced membrane distillation for brine concentration [J]. J. Membr. Sci., 2014, 470: 60-69.
[6] Khamis Mansour M, Fath H E. A new practical ε–NTU correlation for the humidification process under different Lewis number [J]. Desalination, 2016, 395: 72-78.
[7] Mathew B, Hegab H. Application of effectiveness -NTU relationship to parallel flow microchannel heat exchangers subjected to external heat transfer [J]. Int. J. Therm. Sci., 2010, 49(1): 76-85.
[8] Amin N A M, Belusko M, Bruno F. An effectiveness-NTU model of a packed bed PCM thermal storage system [J]. Appl. Energy, 2014, 134: 356-362.
[9] Colburn A P, Du Pont de E I. Mean temperature difference and heat transfer coefficient in liquid heat exchangers [J]. Ind. Eng. Chem., 1933, 25(8): 873-877.
[10] Cartaxo S J M, Fernandes F A N. Counterflow logarithmic mean temperature difference is actually the upper bound: A demonstration [J]. Appl. Therm. Eng., 2012, 55: 5931-5940.
[11] Tay N H S, Belusko M, Castell A, et al. An effectiveness-NTU technique for characterizing a finned tubes PCM system using a CFD model [J]. Appl. Energy, 2014, 131: 377-385.
[12] Tay N H S, Bruno F, Belusko M. Experimental validation of a CFD and an ε–NTU model for a large tube-in-tank PCM system [J]. Int. J. Heat Mass Transfer, 2011, 31: 1172-1175.
[13] Pal E, Kumar I, Joshi J B, et al. CFD simulations of shell-side flow in a shell?and?tube type heat exchanger with and without baffles [J]. Chem. Eng. Sci., 2016, 143: 314-340.
[14] Bellis F D, Catalano L A. CFD optimization of an immersed particle heat exchanger [J]. Appl. Energy, 2012, 97: 841-848.
[15] 张哲, 厉彦忠, 焦安军. 板翅式换热器封头结构的数值模拟 [J]. 化工学报, 2002, 53(11): 1311-1314.
[16] 张哲, 厉彦忠, 田津津. 板翅换热器导流片结构的数值模拟 [J]. 化工学报, 2002, 53(12): 1311-1314.
[17] Jayakumara J S, Mahajania S M, Mandal J C, et al. Experimental and CFD estimation of heat transfer in helically coiled heat exchangers [J]. Chem. Eng. Res. Des., 2008, 86(3): 221-232.
[18] Yataghene M, Legrand J. A 3D-CFD model thermal analysis within a scraped surface heat exchanger [J]. Comput. Fluids, 2013, 71: 380-399.
[19] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annu. Rev. Fluid Mech., 1998, 30: 329-364.
[20] Zhang Y H, Gu X J, Barber R W, et al. Capturing Knudsen layer phenomena using a lattice Boltzmann model [J]. Phys. Rev. E, 2006, 74: 046704.
[21] Chen H, Chen S, Matthaeus W H. Recovery of the Navier?Stokes equations using a lattice-gas Boltzmann method [J]. Phys. Rev. A, 1992, 45(8): R5339-5342.
[22] Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Phys. Rev. E, 2002, 65: 046308.
[23] Lily D K. A proposed modification of the Germano subgrid-scale closure method [J]. Phys. Fluids, 1992, 4: 633-635.
[24] Paul S S, Tachie M F, Ormiston S J. Experimental study of turbulent cross-flow in a staggered tube bundle using particle image velocimetry [J]. Int. J. Heat Fluids Flow, 2007, 28(3): 441-453. |