Chin. J. Process Eng. ›› 2018, Vol. 18 ›› Issue (4): 680-688.DOI: 10.12034/j.issn.1009-606X.217406
• Reviews • Previous Articles Next Articles
Xiaohan YANG1, Taotao FU1*, Shaokun JIANG2, Chunying ZHU1, Youguang MA1
Received:
2017-12-07
Revised:
2018-01-18
Online:
2018-08-22
Published:
2018-08-15
Supported by:
杨潇寒1, 付涛涛1*, 姜韶堃2, 朱春英1, 马友光1
通讯作者:
付涛涛 ttfu@tju.edu.cn
基金资助:
Xiaohan YANG Taotao FU Shaokun JIANG Chunying ZHU Youguang MA. Progress in pressure drop of fluid in microchannels[J]. Chin. J. Process Eng., 2018, 18(4): 680-688.
杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217406
参考文献 [1]陈光文.微反应技术研究进展[A].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院.中国化工学会橡塑产品绿色制造专业委员会微通道反应技术研讨和产业化推进会论文集[C].中国化工学会橡塑产品绿色制造专业委员会、中国化工产业发展研究院、中橡联合工程技术研究院:,2016:9. Chen G W.Research Progress of Micro-reaction Technology[A].National Institute of Chemical Rubber Products Green Manufacturing Committee, China Chemical Industry Development Research Institute, China United Rubber Institute of Engineering Technology. China Chemical Industry Association of rubber and plastics products Green Manufacturing Committee micro-channel reaction technology seminar and industrialization Proceedings Proceedings[C].China Chemical Industry Association Rubber Products Green Manufacturing Committee, China Chemical Industry Development Institute, the United Rubber Institute of Engineering and Technology:,2016:9. [2]SintonD.Energy:the Microfluidic Frontier[J].Lab on a Chip,2014,14(17): 3127-3134. [3]Benson R S,Ponton J W. Process Miniaturization-a route toTotalenvironmentalAcceptability? [J]. Trans. Ind. Chem. Eng.,1993,71:160-168. [4]骆广生.微化工技术——面向中国制造2025[A].中国化工学会.2015年中国化工学会年会论文集[C].中国化工学会:,2015:28. Luo G S.Micro-Chemical Technology - Made in China2025[A].Chemical Industry and Engineering Society of China.Chinese Chemical Society Annual Conference Proceedings in 2015[C].Chemical Industry and Engineering Society of China:,2015:28. [5] K. S. Sorbie, Polymer-Improved Oil Recovery (Springer Science and Business Media, 2013. [6]马友光,付涛涛,朱春英. 微通道内气液两相流行为研究进展[J]. 化工进展,2007,(08):1068-1074. Ma Y G, Fu T T, Zhu C Y.Rsearch Progress of Gas - Liquid Two Phase Flow in Microchannels[J]. Chemical Industry and Engineering Progress , 2007,(08):1068-1074. [7]Mala G M, Li D, Werner C, et al. Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates with ElectrokineticEffects[J]. International Journal of Heat and Fluid Flow, 1997, 18(5): 489-496. [8]D. Pfund , D. Rector, A. Shekarriz, Pressure Drop Measurements in a Micro-channel, AIChE J. 46( 2000): 1 496 -1 507. [9]Jovanovic J, Zhou W, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC. Liquid-liquid Slug Flow: Hydrodynamics and Pressure drop. Chemical Engineering Science.2011; 66: 42-54. [10]Groisman A, Enzelberger M, Quake SR. Microfluidic Memory and Control Devices.Science.2003; 300: 955-958. [11]Bodiguel H, Beaumont J, Machado A, Martinie L, Kellay H, Colin A. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids. Physical Review Letters.2015; 114: 028302. [12]Sutera S P, Skalak R. The history of Poiseuille'slaw[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 1-20. [13]Su H, Niu H, Pan L, et al. The Characteristics of Pressure Drop in Microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3830-3839. [14]Wu, P. Y.; Little, W. A. Measurement of Friction Factor for Flow of Gases in very Fine Channels used for Microminiature Joule-Thompson refrigerators. Cryogenics 1983, 24, 273–277. [15]Peng X F, Peterson G P, Wang B X. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels[J]. Experimental Heat Transfer An International Journal, 1994, 7(4): 249-264. [16]Pfund D, Rector D, Shekarriz A, et al. Pressure Drop Measurements in a Microchannel[J]. AIChE Journal, 2000, 46(8): 1496. [17]Yu D, Warrington R, Barron R, et al. An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes[C]//ASME/JSME Thermal Engineering Conference. 1995, 1(52): 523-530. [18]Hegab H E, Bari A, Ameel T. Friction and Convection Studies of R-134a in Microchannels within the Transition and Turbulent Flow Regimes[J]. Experimental Heat Transfer, 2002, 15(4): 245-259. [19]Hrnjak P, Tu X. Single Phase Pressure Drop in Microchannels[J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 2-14. [20]Judy J, Maynes D, Webb B W. Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels[J]. International Journal of Heat and Mass Transfer, 2002, 45(17): 3477-3489. [21]Barlak S, Yap?c? S, Sara O N. Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes[J]. International Journal of Thermal Sciences, 2011, 50(3): 361-368. [22]Aniskin V M, Adamenko K V, Maslov A A. Experimental Determination of the Friction Factor Coefficient in Microchannels[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 18-23. [23]Cornish R J, Flow in a Pipe of Rectangular Cross-Section[J], Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 120(786): 691~700 [24]White FM (1991) Viscous Fluid Flow[M], 2nd edn. McGraw-Hill, New York [25]White FM (1994) Fluid Mechanics[M], 3rd edn. McGraw-Hill, New York . [26]Shah RK, London AL (1978) Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data[M]. Academic Press, London. [27]Morris C J, Forster F K, Oscillatory Flow in Microchannels[J], Experiments in Fluids, 2004, 36(6): 928~937. [28]Fuerstman M J, Lai A, Thurlow M E, et al, The Pressure Drop along Rectangular MicrochannelsContaining Bubbles[J], Lab Chip, 2007, 7(11): 1479~1489. [29]HenrikBruus.. Theoretical Microfluidics.Department of Micro and Nanotechnology Technical University ofDenmark,2004. [30]李卓,俞坚,马重芳. 小通道单相流体突扩和突缩局部阻力特性[J].化工学报,2007,(05):1127-1131. Li Z, Yu J,Ma C F.Local Resistance Characteristics of Single Phase Fluid with Sudden Expansion and Shrinkage in Small Channels[J].Journal of Chemical Industry and Engineering,2007,(05):1127-1131. [31]Akbari M, Bahrami M, Sinton D. Analytical and Experimental Characterization of Flow in Slowly-Varying Cross-Section Microchannels[C]//ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2010: 2161-2170. [32]Duryodhan V S, Singh S G, Agrawal A. Liquid Flow through Converging Microchannels and a Comparison with Diverging Microchannels[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125002. [33]Dominic A, Sarangan J, Suresh S, et al. An Experimental Study of Heat Transfer and Pressure Drop Characteristics of Divergent Wavy Minichannels using Nanofluids[J]. Heat and Mass Transfer, 2017, 53(3): 959-971. [34]Carrier O, Funfschilling D, Debas H, et al. Pressure Drop in a Split‐and‐Recombine Caterpillar Micromixer in case of Newtonian and Non‐newtonianFluids[J]. AIChE Journal, 2013, 59(7): 2679-2685. [35]Tan, Xiao-Hua& Jiang, Li & Li, Xiao-Ping & Li, Yue-Yang & Zhang, Kai. (2017). A Complex Model for the Permeability and Porosity of Porous Media.Chemical Engineering Science. 172. . 10.1016/j.ces.2017.06.041. [36]Armstrong R T, McClure J E, Berrill M A, et al. Beyond Darcy's law: The Role of Phase Topology and Ganglion Dynamics for Two-Fluid Flow[J]. Physical Review E, 2016, 94(4): 043113. [37]Zami-Pierre F, de Loubens R, Quintard M, et al. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media[J]. Physical Review Letters, 2016, 117(7): 074502. [38]计光华, 计洪苗. 微流动及其元器件[M]. 北京:高等教育出报社,2009. Ji G H, Ji H M.Micro-Flow and Its Components[M].Beijing:Higher Education Press,2009. [39]秦任甲. 毛细管粘度计测定非牛顿流体粘度意义分析[J]. 中国血液流变学杂志,1998,(01):38-40. Qin R J.Analysis of the Viscosity of Non - Newtonian Fluid by Capillary Viscometer[J].Chinese Journal of Hemorheology,1998,(01):38-40. [40]莫丽霞,赵亮,陈旭. 实验室测定液体粘滞系数的一种新方法[J]. 实验室研究与探索,2008,27(11):10-11+44. Mo L X, Zhao L, Chen X.A New Method for Laboratory Determination of Liquid Viscosity Coefficient[J].Laboratory Research and Exploration,2008,27(11):10-11+44. [41]Livak-Dahl, E.; Lee, J.; Burns, M. A. Lab Chip 2013, 13, 297-301. [42]Li Y, Ward K R, Burns M A. Viscosity Measurements using Microfluidic Droplet Length[J]. Analytical Chemistry, 2017, 89(7): 3996-4006. [43] Bird R B, Carreau P J, A Nonlinear Viscoelastic Model for Polymer Solutions and Melts - I, Chemical Engineering Science, 1968, 23(5):427~434. [44] K. Kang, L.J. Lee, K.W. Koelling, High Shear Microfluidics and Its Application in Rheological Measurement, Exp. Fluids 38 (2005) 222. [45] Tang G H, Lu Y B, Zhang S X, et al. Experimental Investigation of Non-Newtonian LiquidFlow in Microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 21-29. [46] Sun Y, Bai B, Ma Y, et al. Flow Behavior Characterization of a Polyacrylamide-Based Friction Reducer in Microchannels[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 20036-20043. [47]戴干策, 陈敏恒. 化工流体力学[M]. 北京:化学工业出版社,2005.7. Dai G C, Chen M H.Chemical Fluid Mechanics[M].Beijing;Chemical Industry Press,2005.7. [48]Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502. [49]Yue J, Chen G, Yuan Q. Pressure Drops of Single and Two-Phase Flows through T-type Microchannel Mixers[J]. Chemical Engineering Journal, 2004, 102(1): 11-24. [50]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102. [51]Nghe P, Degré G, Tabeling P, et al. High Shear Rheology of Shear Banding Fluids in Microchannels[J]. Applied Physics Letters, 2008, 93(20): 204102. [52]Cuenca A, Bodiguel H. Submicron Flow of Polymer Solutions: Slippage Reduction due to Confinement[J]. Physical Review Letters,2013, 110(10): 108304. [53] K. Kozicki, C.H. Chou, C. Tiu, Non-Newtonian Flow in Ducts of Arbitrary CrosssectionalShape, Chem. Eng. Sci. 21 (1966) 665. [54] Bahrami M,Yovanovich M M, Culham J R. A Novel Solution for Pressure Drop in singly Connected Microchannels of Arbitrary Cross-section[J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502. [55]鲁进利, 周宾,许忠林, 等. 不同截面微通道中流动阻力特性[J]. 东南大学学报: 自然科学版, 2011, 41(3): 554-557. Lu J L, Zhou B , Xu Z L,et al.Flow Resistance Characteristics of Microchannels with Different Cross Sections[J].Journal of Southeast University: Natural Science,2011, 41(3): 554-557. [56] Abdelall F F, Hahn G, Ghiaasiaan S M, et al. Pressure Drop caused by Abrupt Flow Area Changes in Small Channels[J]. Experimental Thermal and Fluid Science, 2005, 29(4): 425-434. |
[1] | Weinan MO Youyong SU Dongdong ZHU. Bed characterization and flow heat transfer simulation of fixed bed reactor with low tube to particle diameter ratios [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 692-704. |
[2] | Xiulin LIU Jianyi CHEN Hongbin ZHANG Shenrou GAO. Study on effect of common liquid hopper of parallel hydrocyclones on pressure drop [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 705-715. |
[3] | Zheng LU Yan AN Yang DENG Ran CHENG Hai LIU Mengkui TIAN. Numerical simulation of filtration characteristics of flat ceramic membrane [J]. The Chinese Journal of Process Engineering, 2024, 24(11): 1263-1273. |
[4] | Wanying SUN Fuping QIAN Simin CHENG Jinli LU Yunlong HAN Qianshuang ZHUANG. CFD simulation study on influence of multi structural parameters of Y-shaped pleated clean filter bag on filtration resistance [J]. The Chinese Journal of Process Engineering, 2023, 23(7): 1024-1034. |
[5] | Jiawei ZHOU Xiangyu YAN Zebing ZHENG Qinghui WANG Linjian SHANGGUAN. Research status and prospect of key installations and flow characteristics of pneumatic conveying [J]. The Chinese Journal of Process Engineering, 2023, 23(5): 649-661. |
[6] | Kai XING Han LÜ Yiping FAN Chunxi LU Fuwei SUN. Experimental study on filtration performance of countercurrent moving bed filter [J]. The Chinese Journal of Process Engineering, 2023, 23(5): 662-671. |
[7] | Zhihang ZHENG Junnan MA Zihan YAN Chunxi LU. Effect of different types of feed injection on pressure drop characteristics in riser [J]. The Chinese Journal of Process Engineering, 2023, 23(4): 534-543. |
[8] | Yunde ZHANG Long WANG Yalong HOU Weibing AN Bin CHANG Feng CHEN. Analysis and improvement of filtration performance of filter element for compressor lubricating oil mist [J]. The Chinese Journal of Process Engineering, 2023, 23(3): 421-429. |
[9] | Huang LIU Nan ZHENG Xiaohui ZHAO Jinjia WEI. Influence of air distribution plate on flow characteristics of non-homogeneous particles in shallow fluidized-bed with immersed pipes [J]. The Chinese Journal of Process Engineering, 2023, 23(2): 216-225. |
[10] | Wenbo YAO Zhongjun ZHANG Chengwei LIU Yumin LI Jianbing JI. Flooding model of concentric-ring high gravity rotating bed [J]. The Chinese Journal of Process Engineering, 2022, 22(7): 963-969. |
[11] | Yin TANG Yongjie ZHENG Jingzhi TIAN Jing SUN Hongjian YU. Advances of micro-scale distillation technology [J]. The Chinese Journal of Process Engineering, 2022, 22(6): 699-708. |
[12] | Ming CHANG Jinzhuang FU Yongqi LI Yiping FAN Chunxi LU. Performance analysis of the granular bed/cyclone coupled separator under different operation modes [J]. The Chinese Journal of Process Engineering, 2022, 22(5): 631-639. |
[13] | Jun HE Xiaofeng ZHONG Feng CHEN Zhuangzhuang HUANG Jiachang LIU Yaohan WU Zhongli JI. Experimental study of effect of coalescence layer arrangement on filtration performance of filter for high-pressure natural gas purification [J]. The Chinese Journal of Process Engineering, 2022, 22(2): 276-284. |
[14] | Zhiliang ZHANG Haijun CHEN Tao CHEN Pei MOU Anjun LI Wenjun LI. Numerical simulation analysis of particle concentration field in a super vortex quick separation system under different oil steam parameters [J]. The Chinese Journal of Process Engineering, 2022, 22(1): 50-61. |
[15] | Zirui ZHU Xuedong LIU Liangxiong JIANG Yutong GU Tao PENG Junjie YIN Meihua LIU Wei JIANG. Simulation and experimental study of fluid flow in the bed of columnar particles in a tubular fixed bed reactor [J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1022-1032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||