The Chinese Journal of Process Engineering ›› 2021, Vol. 21 ›› Issue (7): 827-835.DOI: 10.12034/j.issn.1009-606X.221107
• Process & Technology • Previous Articles Next Articles
Zihao CHEN1(), Ke ZHANG1(
), Xibin FU1,2, Zhaodong LI2, Xi ZHANG3, Xiaofeng ZHANG1, Xinjun SUN2, Jianqing QIAN1
Received:
2021-03-29
Revised:
2021-05-26
Online:
2021-07-28
Published:
2021-07-27
Contact:
Ke ZHANG 1062346050@qq.com;huzhude@yeah.net
陈子豪1(), 张可1(
), 付锡彬1,2, 李昭东2, 张熹3, 章小峰1, 孙新军2, 钱健清1
通讯作者:
张可 1062346050@qq.com;huzhude@yeah.net
作者简介:
陈子豪(1998-),男,安徽省蚌埠市人,硕士研究生,先进钢铁材料制备, E-mail: 1062346050@qq.com基金资助:
CLC Number:
Zihao CHEN, Ke ZHANG, Xibin FU, Zhaodong LI, Xi ZHANG, Xiaofeng ZHANG, Xinjun SUN, Jianqing QIAN. Effect of V content on microstructure and mechanical properties of Ti-V complex microalloyed steel[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 827-835.
陈子豪, 张可, 付锡彬, 李昭东, 张熹, 章小峰, 孙新军, 钱健清. V含量对Ti-V复合微合金钢组织和力学性能的影响[J]. 过程工程学报, 2021, 21(7): 827-835.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.221107
Experimental steel | C | Mn | Si | Ti | V | P | S | N | A1 | A3 |
---|---|---|---|---|---|---|---|---|---|---|
High vanadium steel/wt% | 0.081 | 1.42 | 0.10 | 0.053 | 0.14 | 0.007 | 0.0033 | 0.0040 | 677℃ | 845℃ |
Low vanadium steel/wt% | 0.085 | 1.47 | 0.08 | 0.042 | 0.061 | 0.007 | 0.0040 | 0.0049 | 677℃ | 835℃ |
Table 1 Chemical compositions and transformation points of experimental steels
Experimental steel | C | Mn | Si | Ti | V | P | S | N | A1 | A3 |
---|---|---|---|---|---|---|---|---|---|---|
High vanadium steel/wt% | 0.081 | 1.42 | 0.10 | 0.053 | 0.14 | 0.007 | 0.0033 | 0.0040 | 677℃ | 845℃ |
Low vanadium steel/wt% | 0.085 | 1.47 | 0.08 | 0.042 | 0.061 | 0.007 | 0.0040 | 0.0049 | 677℃ | 835℃ |
Coiling temperature/℃ | M3C/wt% | MC/wt% | MC phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | V | C* | Σ | V | Ti | C* | Σ | ||
500 | 0.795 | 0.026 | 0.0040 | 0.059 | 0.884 | 0.040 | 0.035 | 0.018 | 0.093 | (V0.533Ti0.467)C |
550 | 0.761 | 0.034 | 0.0042 | 0.057 | 0.856 | 0.020 | 0.023 | 0.011 | 0.054 | (V0.465Ti0.535)C |
600 | 0.562 | 0.051 | 0.0065 | 0.045 | 0.664 | 0.074 | 0.037 | 0.027 | 0.138 | (V0.667Ti0.333)C |
650 | 0.509 | 0.055 | 0.0076 | 0.041 | 0.613 | 0.120 | 0.037 | 0.038 | 0.195 | (V0.764Ti0.236)C |
Table 2 Results of MC and M3C quantitative phase analysis of high vanadium steel at different coiling temperatures
Coiling temperature/℃ | M3C/wt% | MC/wt% | MC phase | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe | Mn | V | C* | Σ | V | Ti | C* | Σ | ||
500 | 0.795 | 0.026 | 0.0040 | 0.059 | 0.884 | 0.040 | 0.035 | 0.018 | 0.093 | (V0.533Ti0.467)C |
550 | 0.761 | 0.034 | 0.0042 | 0.057 | 0.856 | 0.020 | 0.023 | 0.011 | 0.054 | (V0.465Ti0.535)C |
600 | 0.562 | 0.051 | 0.0065 | 0.045 | 0.664 | 0.074 | 0.037 | 0.027 | 0.138 | (V0.667Ti0.333)C |
650 | 0.509 | 0.055 | 0.0076 | 0.041 | 0.613 | 0.120 | 0.037 | 0.038 | 0.195 | (V0.764Ti0.236)C |
Particle size/nm | Mass fraction/% | Volume fraction/% | σp/MPa |
---|---|---|---|
1~5 | 32.7 | 0.066 | 165 |
5~10 | 14.0 | 0.028 | 58 |
10~18 | 15.6 | 0.032 | 40 |
18~36 | 33.4 | 0.067 | 36 |
36~60 | 4.3 | 0.0087 | 8 |
Table 3 Calculation results of precipitation hardening increments of different size intervals coiled at 600℃
Particle size/nm | Mass fraction/% | Volume fraction/% | σp/MPa |
---|---|---|---|
1~5 | 32.7 | 0.066 | 165 |
5~10 | 14.0 | 0.028 | 58 |
10~18 | 15.6 | 0.032 | 40 |
18~36 | 33.4 | 0.067 | 36 |
36~60 | 4.3 | 0.0087 | 8 |
Coiling temperature/℃ | σo/MPa | σs/MPa | σg/MPa | σd/MPa | σp/MPa | σy(Calculation) | σy(Experiment) |
---|---|---|---|---|---|---|---|
500 | 48 | 78 | 217 | 63 | 144 | 550 | 536 |
550 | 48 | 120 | 211 | 63 | 109 | 551 | 571 |
600 | 48 | 100 | 204 | 63 | 183 | 598 | 609 |
650 | 48 | 68 | 197 | 63 | 201 | 577 | 552 |
Table 4 Strengthening increment of high vanadium steel at different coiling temperatures
Coiling temperature/℃ | σo/MPa | σs/MPa | σg/MPa | σd/MPa | σp/MPa | σy(Calculation) | σy(Experiment) |
---|---|---|---|---|---|---|---|
500 | 48 | 78 | 217 | 63 | 144 | 550 | 536 |
550 | 48 | 120 | 211 | 63 | 109 | 551 | 571 |
600 | 48 | 100 | 204 | 63 | 183 | 598 | 609 |
650 | 48 | 68 | 197 | 63 | 201 | 577 | 552 |
1 | 齐俊杰, 黄运华, 张跃. 微合金化钢 [M]. 北京: 冶金工业出版社, 2006: 1-97. |
Qi J J, Huang Y H, Zhang Y. Microalloyed steel [M]. Beijing: Metallurgical Industry Press, 2006: 1-97. | |
2 | 孙维, 完卫国. 铌微合金化长材产品的开发 [J]. 炼钢, 2011, 27(3): 7-11, 70. |
Sun W, Wan W G. Development of Nb microalloyed long products [J]. Steelmaking, 2011, 27(3): 7-11, 70. | |
3 | 蒋蓉. 含V, Nb, Ti微合金钢的微观结构及力学性能 [J]. 武汉理工大学学报, 2009, 31(9): 13-15, 24. |
Jiang R. Microstructure and mechanical properties of microalloyed steel containing V, Nb and Ti [J]. Journal of Wuhan University of Technology, 2009, 31(9): 13-15, 24. | |
4 | 张可, 雍岐龙, 孙新军, 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52(5): 529-537. |
Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo microalloyed ultra high strength steel [J]. Acta Metallurgica Sinica, 2016, 52(5): 529-537. | |
5 | 解万里, 孟宪珩. 钒对低合金钢的强化作用 [J]. 承钢技术, 2006, (2): 31-37. |
Xie W L, Meng X H. Strengthening effect of vanadium on low alloy steel [J]. Chenggang Technology, 2006, (2): 31-37. | |
6 | 王仪康. 微合金钢回顾与展望 [J]. 中国工程科学, 2000, 2(2): 79-84. |
Wang Y K. Review and prospect of microalloyed steel [J]. China Engineering Science, 2000, 2(2): 79-84. | |
7 | 韩孝永. 铌、钒、钛在微合金钢中的作用 [J]. 宽厚板, 2006, 12(1): 39-41. |
Han X Y. Functions of Nb, V and Ti in micro-alloyed steel [J]. Wide and Heavy Plate, 2006, 12(1): 39-41. | |
8 | 惠亚军, 赵征志, 赵爱民, 等. 卷取温度对钛微合金化钢组织与性能的影响 [J]. 材料科学与工艺, 2014, 22(2): 81-85. |
Hui Y J, Zhao Z Z, Zhao A M, et al. Effect of coiling temperature on microstructure and properties of Ti microalloyed steel [J]. Materials Science and Technology, 2014, 22(2): 81-85. | |
9 | Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ International, 2004, 44(11): 1945-1951. |
10 | Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. 2013, 565(10): 430-438. |
11 | Bu F Z, Wang X M, Yang S W, et al. Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels [J]. Materials Science & Engineering A, 2015, 620(3): 22-29. |
12 | 陈俊, 吕梦阳, 唐帅, 等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50(5): 524-530. |
Chen J, Lü M Y, Tang S, et al. Microstructure, properties and interphase precipitation behavior of V-Ti microalloyed steel [J]. Acta Metallurgica Sinica, 2014, 50(5): 524-530. | |
13 | 王茹玉, 赵时雨, 张可, 等. 回火温度对Ti-V-Mo复合微合金钢组织及硬度的影响 [J]. 钢铁研究学报, 2020, 32(12): 1132-1140. |
Wang R Y, Zhao S Y, Zhang K, et al. Effect of tempering temperature on microstructure and hardness of Ti-V-Mo composite microalloyed steel [J]. Journal of Iron and Steel Research, 2020, 32(12): 1132-1140. | |
14 | 李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为 [J]. 金属学报, 2015, 51(4): 417-424. |
Li X L, Wang Z D. Interphase precipitation behavior of nano carbides in low carbon microalloyed steel containing Nb-Ti [J]. Acta Metallurgica Sinica, 2015, 51(4): 417-424. | |
15 | Zhang H M, Chen R, Jia H B, et al. Effect of solid-solution second-phase particles on the austenite grain growth behavior in Nb-Ti high-strength if steel [J]. Strength of Materials, 2020, 52: 539-547. |
16 | 孙超凡, 蔡庆伍, 陈振华, 等. 冷却制度对铁素体基Ti-Mo微合金钢超细碳化物析出行为的影响 [J]. 材料工程, 2014, (10): 47-52. |
Sun C F, Cai Q W, Chen Z H, et al. Effect of cooling schedule on precipitation behavior of ultrafine carbides in ferrite based Ti-Mo microalloyed steel [J]. Materials Engineering, 2014, (10): 47-52. | |
17 | Zaitsev A I, Zaitsev A I, Koldaev A V, et al. Influence of the thermal deformation treatment on the structural state and properties of Ti-Mo microalloyed steels of the ferritic class [J]. IOP Conference Series: Materials Science and Engineering, 2020, 969(1): 12-17. |
18 | 卜凡征, 王学敏, 陈琳, 等. Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变 [J]. 材料热处理学报, 2015, 36(8): 96-103. |
Bu F Z, Wang X M, Chen L, et al. Precipitation behavior and microstructure evolution of nano carbides in Ti-Nb-Mo microalloyed steel during tempering [J]. Journal of Materials Heat Treatment, 2015, 36(8): 96-103. | |
19 | Jang J H, Heo Y U, Lee C H, et al. Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel [J]. Materials Science and Technology, 2013, 29(3): 309-313. |
20 | 雍岐龙. 钢铁材料中的第二相 [M]. 北京:冶金工业出版社, 2006: 1-509. |
Yong Q L. Secondary phases in steels [M]. Beijing: Metallurgical Industry Press, 2006: 1-509. | |
21 | 陈昕, 刘春明. 钒和钼对微合金化贝氏体钢第二相析出的影响 [J]. 材料与冶金学报, 2011, 10(3): 209-211, 236. |
Chen X, Liu C M. Effect of vanadium and molybdenum on precipitation of second phase in microalloyed bainitic steel [J]. Journal of Materials and Metallurgy, 2011, 10(3): 209-211, 236. | |
22 | 雍岐龙, 马鸣图, 吴宝榕. 微合金钢─物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 1-368. |
Yong Q L, Ma M T, Wu B R. Microalloyed steel-physical and mechanical metallurgy [M]. Beijing: China Machine Press, 1989: 1-368. | |
23 | Gladman T, McIvor I D, Pickering F B. Some aspects of the structure-property relationships in high carbon ferrite-pearlite steels [J]. Journal of the Iron and Steel Institute, 1972, 210(12): 916-930. |
24 | Hall E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proccedings of the Physical Society. Section B, 1951, 64(9): 747-753. |
25 | Petch N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25-28. |
26 | 马玉喜, 段小林, 刘静, 等. 800 MPa级Ti高强钢铸坯断裂的原因 [J]. 钢铁研究学报, 2016, 28(2): 51-56. |
Ma Y X, Duan X L, Liu J, et al. Causes of slab fracture of 800 MPa Ti high strength steel [J]. Journal of Iron and Steel Research, 2016, 28(2): 51-56. | |
27 | Ashby M F, Kelly A, Nicholson R B. Strengthening mechanisms in crystals [M]. Amsterdam: Elsevier, 1971: 137. |
28 | Chin G Y, Mammel W L. Computer solutions of the Taylor analysis for axisymmetric flow [J]. Transactions of the Metallurgical Society of AIME, 1967, 239(1): 1400-1405. |
29 | 杨庚蔚, 陆佳伟, 孙辉, 等. Ti-V微合金化热轧高强钢的相变规律及组织性能 [J]. 钢铁研究学报, 2019, 31(8): 726-732. |
Yang G W, Lu J W, Sun H, et al. Phase transformation and microstructure of Ti-V microalloyed hot rolled high strength steel [J]. Journal of Iron and Steel Research, 2019, 31(8): 726-732. | |
30 | Kim Y W, Kim J H, Hong S G, et al. Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel [J]. Materials Science and Engineering: A, 2014, 605(5): 244-252. |
[1] | Ming ZHANG Leilei ZHOU Enrong LIANG Zhigang ZHU Pengyan ZHANG. Microstructure and properties analysis of Microstructure and properties analysis of welded joint of 22MnB5/QStE550TM dissimilar steel [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 863-874. |
[2] | Qian SUN Huifeng ZHANG Chuanbing HUANG Shouquan YU Shirui YANG Shige FANG Weigang ZHANG. Multiphase reaction fabrication and ablation resistance of carbon fiber-reinforced ultra-high temperature ceramic matrix composites [J]. The Chinese Journal of Process Engineering, 2023, 23(2): 291-300. |
[3] | Yue MA Xintao ZHOU Jing HUANG Zhongqiu LUO Yizhong FU Weihong MU Luxing WANG Zhoujun SHAO. Research status of mineral admixtures on properties and mechanism of magnesium phosphate cement [J]. The Chinese Journal of Process Engineering, 2021, 21(6): 629-638. |
[4] | You FENG Jingkun ZHANG Yang XUE Haosheng WANG Donghai ZHANG Yunfa CHEN. Effect of polyaniline particles on corrosion resistance of waterborne epoxy resin coatings [J]. Chin. J. Process Eng., 2019, 19(2): 419-426. |
[5] | Hao ZHANG Yuandi XU Yuan FANG. Preparation mechanism of modified porous steel slag-based rubber composite materials [J]. Chin. J. Process Eng., 2019, 19(2): 387-392. |
[6] | Bo PAN Luyu WANG Haijun WANG Songda JIANG Liqiang WAN Xufeng HAO Jie TIAN Farong HUANG. Synthesis and properties of poly(triazole ester) resins [J]. Chin. J. Process Eng., 2019, 19(1): 181-188. |
[7] | WANG Yong WU Shao-jie CHEN Wei-qing LI Jie. Effect of Coiling Temperature on the Microstructure and Texture Evolution of Non-oriented Silicon Steel [J]. , 2014, 14(6): 1047-1052. |
[8] | WANG Ming-yong WANG Zhi; LIU Ting GUO Zhan-cheng;. Electrodeposition of Nickel Foil under Super-gravity Field and Its Mechanical Properties [J]. , 2009, 9(3): 568-573. |
[9] | YU Bin;ZHU Qing-shan. Preparation and Characterization of Melt-infiltrated Zirconia-Glass All-ceramic Dental Composite [J]. , 2006, 6(4): 666-669. |
[10] | TONG Xin;ZHANG Zhen-fang;LU Yan-cheng;ZHENG Jing-jing. Swelling and Mechanical Behavior of Poly(vinyl alcohol)/Bentonite Hybrid Hydrogels [J]. , 2006, 6(3): 503-506. |
[11] | LI Hong-bin;JI Hai-bin;YAO Guang-chun;LIU Yi-han;GUO Zhi-qiang;LIU Zhen-gang. Microstructure and Mechanical Properties of Mg-Li-Mn Alloy [J]. , 2006, 6(3): 491-494. |
[12] | ZHANG Shu-ting;YAO Guang-chun;LIU Yi-han. Research on Mechanical Properties of SiCw/NiFe2O4 Spinel Used as Matrix of Inert Anode [J]. , 2006, 6(2): 319-322. |
[13] | SUN Shui-sheng;LI Chun-zhong;ZHANG Ling;CAO Hong-ming. Interfacial Structure and Mechanical Properties of Nano-CaCO3/PVC Composites Affected by CPE [J]. , 2005, 5(5): 568-571. |
[14] | . Characterization of the Mechanical Properties of Urea-Formaldehyde Microcapsules [J]. , 2005, 5(4): 450-454. |
[15] | LIU Yu-xing;GUO Zhan-cheng;LU Wei-chang;DUAN Yue. SEM Morphology and Tensile Strength of Nickel Foil by Electrodeposition [J]. , 2004, 4(4): 340-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||