Welcome to visit The Chinese Journal of Process Engineering, Today is

The Chinese Journal of Process Engineering

   

Research progress in recycling of retired crystalline silicon photovoltaic modules

Yueyue GUO1, Yulong HU1, Yian LIU1, Lei ZHAO1, Songlin RAN2, Xing JIN1*   

  1. 1. Anhui Key Laboratory of Low Carbon Metallurgy and Solid Waste Resource Utilization, Anhui University of Technology, Ma'anshan, Anhui 243002, China 2. School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China
  • Received:2025-06-17 Revised:2025-07-28 Online:2025-09-08 Published:2025-09-08

退役晶硅光伏组件回收的研究进展

郭月月1,胡玉龙1,刘艺安1,赵蕾1,冉松林2,金星1*   

  1. 1. 安徽工业大学安徽省低碳冶金与固废资源化重点实验室,安徽 马鞍山 243002 2. 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
  • 通讯作者: 金星
  • 基金资助:
    硅灰和晶硅废料协同氮化合成Si2N2O过程中包覆结构调控及杂质固化机理

Abstract: The accelerated global transition toward renewable energy structures has precipitated a surge in photovoltaic module installations, intensifying environmental governance pressures associated with decommissioned crystalline silicon modules. This paper systematically examines resource recovery technology systems and policy pathways for end-of-life crystalline silicon photovoltaic modules, with a focused emphasis on the efficient reclamation of valuable metals and the construction of circular economy models. By analyzing the energy efficiency of three main recycling technologies - mechanical, thermal, and chemical treatment, the study reveals their economic and technical limits. Mechanical processes, like high - voltage pulse crushing, can concentrate metals, but their efficiency is constrained by material separation rates. Thermal treatment (400–600℃) can recover high - purity materials (glass purity>98.5%), but it's energy - intensive and poses challenges for managing fluorine - containing waste gases. Chemical methods, such as toluene - based solvent systems, are great for recycling silicon wafers with high purity (>99%), but they risk secondary pollution and high costs. The study also explores the recovery of valuable metals from end-of-life crystalline silicon photovoltaic modules, outlining the challenges and prospects in this area.

Key words: retired crystalline silicon photovoltaic modules, recovery of valuable metals, mechanical treatment, thermal treatment, Chemical treatment, tesource recovery technology

摘要: 随着全球能源结构向可再生能源转型加速,光伏组件装机量激增导致退役晶硅组件的环境治理压力日益凸显。本文系统论述了退役晶硅光伏组件的资源化回收技术体系及政策路径,重点聚焦于有价金属的高效回收与循环经济模式构建。通过分析机械处理、热处理及化学处理三类主流技术的能效特征,揭示了其技术经济性边界:机械处理(如高压脉冲破碎技术)可实现金属定向富集,但受限于材料解离效率;热处理(400–600℃)虽能实现高纯度材料回收(玻璃纯度>98.5%),却面临能耗高与含氟废气治理难题;化学处理(如甲苯溶剂体系)在硅片回收纯度(>99%)方面优势显著,但存在二次污染风险与成本问题。此外,本文还对退役晶硅光伏组件中的有价金属回收技术进行了分析,确定了回收退役晶硅光伏组件的挑战和前景。

关键词: 退役晶硅光伏组件, 有价金属回收, 机械处理, 热处理, 化学处理, 资源化技术