-
Research progress in preparation of silicon-based anode materials for lithium-ion batteries by radio-frequency induction thermal plasma
- Zongxian YANG Yuanjiang DONG Chang LIU Huacheng JIN Fei DING Baoqiang LI Liuyang BAI Fangli YUAN
-
The Chinese Journal of Process Engineering. 2024, 24(5):
501-513.
DOI: 10.12034/j.issn.1009-606X.223230
-
Asbtract
(
)
HTML
(
)
PDF (7425KB)
(
)
-
Related Articles |
Metrics
As one of the next-generation anode materials with the most promising application prospects, silicon anode benefits from a high theoretical specific capacity, a sufficient working potential, abundant and inexpensive sources, environmental friendliness, safety, and dependability. However, Si will experience significant volume variations throughout the lithiation and delithiation processes. This will result in significant internal stress, which will cause issues including material pulverization, repetitive growth of the solid electrolyte interface (SEI), and electrode failure. Through the utilization of nano-silicon-based anode materials, it is possible to effectively mitigate the volume impact, enhance both conductivity and stability. The utilization of radio-frequency (RF) induction thermal plasma offers several notable benefits, including elevated temperatures, rapid cooling, precise control, and uninterrupted operation. Thermal plasma has the ability to provide particles a unique growth environment and process that is helpful in the creation of products with special morphologies, such as zero-dimensional nanospheres and one-dimensional nanowires. Additionally, the extremely high temperatures can totally evaporate raw materials, guarantee uniformity of product, and be advantageous for doping second-phase materials. Consequently, it serves as a significant method for the production of nano-silicon-based anodes with a controllable morphology and structure, as well as high purity and excellent dispersibility. This work provides a review of the scientific advancements pertaining to silicon-based anode materials for lithium-ion batteries that are fabricated using RF thermal plasma. To commence, a concise introduction is provided for the thermal plasma technology. Then, this work focuses on the synthesis of various essential materials using thermal plasma, including silicon nanospheres (Si NSs), silicon nanowires (Si NWs), silicon monoxide nanowires (SiO NWs), silicon monoxide nanonetworks (SiO NNs), high-silicon silicon suboxide nanowires (SiOx NWs), silicon-based ferrosilicon alloy nanospheres (Si/FeSi2 NPs). Furthermore, the work emphasizes the applications of these materials in the anode electrode of lithium-ion batteries. Finally, the development of thermal plasma technology is prospected.