| [1] PESCHEL A, J?RKE A, SUNDMACHER K, et al. Optimal reaction concept and plant wide optimization of the ethylene oxide process [J]. Chemical Engineering Journal, 2012, 207: 656-674. [2] LEE H J, GHANTA M, BUSCH D H, et al. Toward a CO2-free ethylene oxide process: homogeneous ethylene oxide in gas-expanded liquids [J]. Chemical Engineering Science, 2010, 65(1): 128-134.
 [3] PESCHEL A, KARST F, FREUND H, et al. Analysis and optimal design of an ethylene oxide reactor [J]. Chemical Engineering Science, 2011, 66(24): 6453-6469.
 [4] AMEYA J, XIAOQING Y, TIMOTHY A B, et al. Thermal Decomposition of Ethylene Oxide:? Potential Energy Surface, Master Equation Analysis, and Detailed Kinetic Modeling. Journal of Physical Chemistry A, 2005, 109(35): 8016-8027.
 [5] JOSHI A, YOU X, BARCKHOLTZ T A, et al. Thermal decomposition of ethylene oxide: potential energy surface, master equation analysis, and detailed kinetic modeling [J]. The Journal of Physical Chemistry A, 2005, 109(35): 8016-8027.
 [6] BRITTON L G. Thermal stability and deflagration of ethylene oxide [J]. Plant/Operations Progress, 1990, 9(2): 75-86.
 [7] BUBBICO R, DORE G, MAZZAROTTA B. Risk analysis study of road transport of ethylene oxide [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(1): 49-54.
 [8] JUNE R K, DYE R. F. Explosive decomposition of ethylene oxide [J]. Plant/Operations Progress, 1990, 9(2): 67-74.
 [9] FREEDER B G, SNEE T J. Alkali-catalysed polymerization of ethylene oxide and propylene oxide-hazard evaluation using accelerating rate calorimetry [J]. Journal of Loss Prevention in the Process Industries, 1988, 1(3): 164-168.
 [10] MELHEM G A, GIANETTO A, LEVIN M E, et al. Kinetics of the reactions of ethylene oxide with water and ethylene glycols [J]. Process Safety Progress, 2001, 20(4): 231-246.
 [11]王犇, 刘毛毛, 赵琳, 等. 环氧乙烷热稳定性及杂质对其影响研究. 安全与环境学报. 2015, 15(5): 123-127.
 [12] DINH L T T, ROGERS W J, MANNAN M S, et al. Reactivity of ethylene oxide in contact with basic contaminants [J]. Thermochimica Acta, 2008, 480(1): 53-60.
 PEKALSKI A A, ZEVENBERGEN J F, BRAITHWAITE M, et al. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence [J]. Journal of Hazardous Materials, 2005, 118(1): 19-34.
 [13] Liu J, Zhang F, Xu W. et al. Thermal reactivity of ethylene oxide in contact with contaminants: A review. Thermochimica Acta. 652 (2017): 85–96.
 [14] LEVIN M. E. The reactivity of ethylene oxide in contact with iron oxide fines as measured by adiabatic calorimetry [J]. Journal of Hazardous Materials, 2003, 104(1): 227-245.
 [15] 刘静如, 孙峰, 刘文旭, 等. 环氧乙烷水溶液失控反应特性研究. 安全与环境学报. 2017, 17(6): 2234-2239.
 [16] DEVER J P, GEORGE K F, HOFFMAN W C, et al. Ethylene Oxide, Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, Kroschwitz, J. I., Editor, John Wiley & Sons, NewYork, NY, 915-959, 1994.
 [17] WILCOCK E, ROGERS R L. A review of the phi factor during runaway conditions. Journal of Loss Prevention in the Process Industries, 1997, 10(5-6): 289-302.
 
 |