1. State Key Lab. Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Spherical titanium powder is one of the most important raw materials used in metal additive manufacturing (3D printing). The development and optimization of the preparation method of spherical titanium powders are hot issues around the world. In this work, the research advance on the preparation of spherical titanium powders was analyzed. Specifically, the main preparation methods of spherical titanium powders were analyzed and their features were summarized in this work, which included gas atomization (GA), plasma atomization (PA), centrifugal atomization (CA) and plasma spheroidization. Finally, the future development trend of spherical titanium powders was forecasted and preparation high purity spherical titanium powders with low price and fine particle size will be an important research content in the future.
李保强 金化成 张延昌 胡鹏 袁方利 陈运法. 3D打印用球形钛粉制备技术研究进展[J]. 过程工程学报, 2017, 17(5): 911-917.
Baoqiang LI Huacheng JIN Yanchang ZHANG Peng HU Fangli YUAN Yunfa CHEN. Research Progress of Preparation Methods of Spherical Titanium Powders for 3D Printing. Chin. J. Process Eng., 2017, 17(5): 911-917.
[1] Srivatsan T S, Sudarshan S T. Additive Manufacturing: Innovations, Advances, and Application [M], Taylor & Francis Group, LLC 2016: 2-5.
[2] 谭立忠, 方芳. 3D打印技术及其在航空航天领域的应用 [J]. 战术导弹技术, 2016, (04): 1-7.
[3] 赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术 [J]. 南京航空航天大学学报, 2014, (05): 675-683.
[4] 孙智强. 我国3D打印产业发展现状及前景展望 [J]. 江苏科技信息, 2014, (06): 19-20.
[5] 李轩, 莫红, 李双双, 等. 3D打印技术过程控制问题研究进展 [J]. 自动化学报, 2016, (07): 983-1003.
[6] 行业数据 [J]. 今日印刷, 2016, (01): 4.
[7] Yang S, Gwak J N, Lim T S, et al. Preparation of Spherical Titanium Powders from Polygonal Titanium Hydride Powders by Radio Frequency Plasma Treatment [J]. Mater. Trans., 2013, 54(12): 2313-2316.
[8] 张胜, 徐艳松, 孙姗姗, 等. 3D打印材料的研究及发展现状 [J]. 中国塑料, 2016, (01): 7-14.
[9] Tang H P, Qian M, Liu N, et al. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting [J]. JOM, 2015, 67(3): 555-563.
[10] 袁建鹏. 3D打印用特种粉体材料产业发展现状与趋势 [J]. 新材料产业, 2013, (12): 19-23.
[11] Larson U R. Method and Apparatus for Producing Atomized Metal Powder [P]. US patent: 4124377, 1978-11-07.
[12] Gerling R, Clemens H and Schimansky F P. Power Metallurgical Processing of Intermetallic Gamma Titanium Aluminides [J]. Adv. Eng. Mater., 2004, 6(1-2): 23-38.
[13] Charles F Y, John H M. Method for Atomizing Titanium [P]. US patent: 4544404, 1985-10-01.
[14] Hohmann M, J?nsson S. Modern Systems for Production of High Quality Metal Alloy Powder [J]. Vacuum, 1990, 41(7): 2173-2176.
[15] Tsantrizos P G, Allaire F, Entezarian M. Method of Production of Metal and Ceramic Powders by Plasma Atomization [P]. US patent: 5707419, 1998-01-13.
[16] 谢焕文, 邹黎明, 刘辛, 等. 球形钛粉制备工艺现状 [J]. 材料研究与应用, 2014, (02): 78-82.
[17] 陆晨. 热等离子体制备高强度陶瓷空心微球的研究 [D]. 北京: 中国科学院研究生院(过程工程研究所), 2015: 2-4.
[18] Hu P, Yan S, Yuan F, et al. Effect of Plasma Spheroidization Process on the Microstructure and Crystallographic Phases of Silica, Alumina and Nickel Particles [J]. Plasma Sci. Technol., 2007, 9(5): 611-615.
[19] Boulos M. Plasma power can make better powders [J]. Metal Powder Report, 2004, 59(5): 16-21.
[20] 闫世凯, 胡鹏, 袁方利, 等. 射频等离子体球化SiO2粉体的研究 [J]. 材料工程, 2006, (02): 29-33.
[21] 王琪, 李圣刚, 吕宏军, 等. 雾化法制备高品质钛合金粉末技术研究 [J]. 钛工业进展, 2010, (05): 16-18.
[22] Ahsan M N, Pinkerton A J, Moat R J, et al. A Comparative Study of Laser Direct Metal Deposition Characteristics using Gas and Plasma-atomized Ti-6Al-4V Powders [J]. Mater. Sci. Eng. A, 2011, 528(25-26): 7648-7657.
[23] Wang L, Liang Z, Shi H. Properties and Forming Process of Prealloyed Powder Metallurgy Ti-6Al-4V Alloy [C]// Trans. of Nonferrous Met. Soc. China, 2007, 17: S639-S643.
[24] Beauchamp B. Raymor AP&C: Leading the Way with Plasma Atomised Ti Spherical Powders for MIM [J]. Powder Injection Moulding International, 2011, 5: 55-57.
[25] 吴引江, 梁永仁. 钛粉末及其粉末冶金制品的发展现状 [J]. 中国材料进展, 2011, (06): 44-50+63.
[26] 赖高惠. 用气体雾化法大量生产钛粉 [J]. 粉末冶金技术, 1995, (02): 126.
[27] 曾光, 白保良, 张鹏, 等. 球形钛粉制备技术的研究进展 [J]. 钛工业进展, 2015, (01): 7-11.
[28] 韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状 [J]. 中国材料进展, 2014, (12): 748-755.
[29] Wegmann G, Gerling R, Schimansky F P. Temperature Induced Porosity in Hot Isostatically Pressed Gamma Titanium Aluminide Alloy Powders [J]. Acta Mater., 2003, 51(3): 741-752.
[30] Li B, Sun Z, Jin H, et al. Fabrication of Homogeneous Tungsten Porous Matrix using Spherical Tungsten Powders Prepared by Thermal Plasma Spheroidization Process [J]. Int. J. Refract. Met. Hard Mater., 2016, 59: 105-113.
[31] Hou G, Cheng B, Ding F, et al. Well Dispersed Silicon Nanospheres Synthesized by RF Thermal Plasma Treatment and Their High Thermal Conductivity and Dielectric Constant in Polymer Nanocomposites [J]. RSC Adv., 2015, 5(13): 9432-9440.
[32] Zhang H, Bai L, Hu P, et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma [J]. Int. J. Refract. Met. Hard Mater., 2012, 31(0): 33-38.
[33] Hu P, Yuan F, Bai L, et al. Plasma Synthesis of Large Quantities of Zinc Oxide Nanorods [J]. J. Phys. Chem. C, 2006, 111(1): 194-200.
[34] Sun Z, Lu C, Fan J, et al. Porous Silica Ceramics with Closed-cell Structure Prepared by Inactive Hollow Spheres for Heat Insulation [J]. J. Alloys Compd., 2016, 662: 157-164.
[35] Sun Z, Fan J and Yuan F. Three-dimensional Porous Silica Ceramics with Tailored Uniform Pores: Prepared by Inactive Spheres [J]. J. Eur. Ceram. Soc., 2015, 35(13): 3559-3566.
[36] Li B, Sun Z, Hou G, et al. The Sintering Behavior of Quasi-spherical Tungsten Nanopowders [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 44-50.
[37] Hou G, Cheng B, Cao Y, et al. Scalable Synthesis of Highly Dispersed Silicon Nanospheres by RF Thermal Plasma and Their Use as Anode Materials for High-performance Li-ion Batteries [J]. J. Mater. Chem. A, 2015, 3(35): 18136-18145.
[38] Yan M, Xu W, Dargusch M S, et al. Review of Effect of Oxygen on Room Temperature Ductility of Titanium and Titanium Alloys [J]. Powder Metall., 2014, 57(4): 251-257.