欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2017, Vol. 17 ›› Issue (2): 231-236.DOI: 10.12034/j.issn.1009-606X.216291

• 流动与传递 • 上一篇    下一篇

高速气流冲击下微细颗粒的输送特性

孟凡凯1, 尹少武1,2*, 张 沛1, 刘传平1,2, 王 立1,2   

  1. 1. 北京科技大学能源与环境工程学院,北京 100083
    2. 北京科技大学冶金工业节能减排北京市重点实验室,北京 100083
  • 收稿日期:2016-09-06 修回日期:2016-10-12 出版日期:2017-04-20 发布日期:2017-04-19
  • 通讯作者: 孟凡凯 ny_41042112@163.com
  • 基金资助:
    国家自然科学基金项目;国家科技重大专项;北京高等学校青年英才计划项目

Entrainment Characteristics of Fine Particles under High Speed Air Flow

MENG Fan-kai1,  YIN Shao-wu1,2*,  ZHANG Pei1,  LIU Chuan-ping1,2,  WANG Li1,2   

  1. 1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry,University of Science and Technology Beijing, Beijing 100083, China
  • Received:2016-09-06 Revised:2016-10-12 Online:2017-04-20 Published:2017-04-19
  • Contact: Fan-Kai MENG ny_41042112@163.com

摘要: 研究了高速气流冲击下微细颗粒在流化床中的供料输送特性,利用正交实验考察了气体流量、开孔数、孔径和气孔埋入料层深度对微细颗粒输送特性(输送速度和粉气比)的影响. 结果表明,气体流量为1~2.5 m3/h时,增加气体流量能显著提升微细颗粒的输送速度;孔径越小越有利于提升输送效果,但需注意喷口处气体流速限制;开孔数对微细颗粒的输送特性影响不显著;随气孔埋入料层深度增加,高速气流冲击破碎作用局部强化,输送效果明显提升. 孔径2 mm、开孔数1个、气孔埋入料层深度200 mm和气体流量2.5 m3/h的操作条件下,输送速度可达3.1 g/min,粉气比为0.058 g/g.

关键词: 微细颗粒, 气流冲击, 输送特性, 团聚, 流态化

Abstract: The entrainment characteristics of fine particles are investigated in a cylindrical fluidized-bed under high speed air flow. The effects of the flow rate of gas, the number of holes, the size of holes, and the distance between holes and the upper surface of the material layer on the entrainment characteristics (entrainment rate and entrained powder-gas ratio) are experimentally studied through orthogonal experiment. The experimental results show that an increase in flow rate of gas and the distance between hole and upper surface of the material layer constantly improves the entrainment characteristics. A decrease in the size of holes enhances such characteristics and improves the entrainment characteristics. Whereas the number of holes has no significant effect on the entrainment characteristics. This study determines that an optimal operating condition can result in optimal entrainment characteristics (W, 3.1 g/min and R, 0.058 g/g), which can be achieved with a flow rate of 2.5 m3/h, the number of holes of 1, the size of holes of 2 mm and the upper surface of the material layer of 200 mm.

Key words: fine particles, air impact, entrainment characteristics, agglomeration, fluidization