[1] Meng F T, Xu Y. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol [J]. Biotechnol Lett, 2010, 32(4): 533-537.
[2] Ye Q, Cao H, Zang G L, et al. Biocatalytic synthesis of (S)-4-chloro-3-hydroxybutanoate ethyl ester using a recombinant whole-cell catalyst [J]. Appl Microbiol Biotechnol, 2010, 88(6): 1277-1285.
[3] Larroy C, Fernández M R, González E, et al. Properties and functional significance of Saccharomyces cerevisiae ADHVI [J]. Chemico-Biological Interactions, 2003, 0(143-144): 229-238.
[4] Quaglia D, Pori?M, Galletti?P, et al. His-tagged Horse Liver Alcohol Dehydrogenase: Immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols [J]. Process Biochemistry, 2013, 48(5-6): 810-818.
[5] Tsuji N, Honda K, Wada M, et al. Isolation and characterization of a thermotolerant ene reductase from Geobacillus sp. 30 and its heterologous in Rhodococcus opacus [J]. Applied Microbiology and Biotechnology, 2014, 98(13): 5925-5935.
[6] Kaushik M, Sinha P, Jaiswal P, et al. Protein engineering and de novo designing of a biocatalyst [J]. J Mol Recognit, 2016, 29(10): 499-503.
[7] Holsch K, Weuster-Botz D. Kinetic mechanism of 3-ketoacyl-(acyl-carrier-protein) reductase from Synechococcus sp. strain PCC 7942: A useful enzyme for the production of chiral alcohols [J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 3(69): 89-94.
[8] Valadez-Blanco R, Livingston A G. Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis Part I. Product formation kinetics and feeding strategies in aqueous media [J]. Biochemical Engineering Journal, 2009, 1(46): 44-53.
[9] Tu?ek A, ?ali? A, Kurtanjek Z, et al. Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor [J]. Engineering in Life Sciences, 2012, 12(1): 49-56.
[10] 陈晓彦. 微生物法不对称还原β羰基苯丙酸乙酯制备(S)-(-)-β-羟基苯丙酸乙酯的研究[D]. 浙江:浙江工业大学. 2010: 35-51.
Chen X Y. Asymmetric Reduction of 3-Oxo-3-Phenylpropionic Acid Ethyl Ester by Microorganism[D]. ZheJiang:Zhejiang Universit of Technology. 2010:35-51.
[11] Vogl M, Kratzer R, Nidetzky B, et al. Candida tenuis xylose reductase catalyzed reduction of aryl ketones for enantioselective synthesis of active oxetine derivatives [J]. Chirality, 2012, 24(10): 847-853.
[12] Patel R, Kumari M, Khan A B. Recent advances in the applications of ionic liquids in protein stability and activity: a review [J]. Appl Biochem Biotechnol, 2014, 172(8): 3701-3720.
[13] Salim F, Marina I, Bimaendu R, et al. Correlation between thermostability and stability of glycosidases in ionic liquid [J]. Biotechnol Lett, 2011, 33(6): 1215-1219.
[14] 石贤爱, 李聪颖, 傅娟, 等. 表面活性剂对面包酵母细胞催化2-辛酮不对称还原反应的影响 [J]. 过程工程学报, 2010, 10(2): 339-343.
Shi X A, Li C Y, Fu J, et al. Impact of Surfactants on Asymmetric Bioreduction of 2-Octanone by Saccharomyces cerevisiae [J].?The Chinese Journal of Process Engineering, 2010, 10(2): 339-343.
[15] Tao J H, Xu J H. Biocatalysis in development of green pharmaceutical processes [J]. Curr Opin Chem Biol, 2009, 13(1): 43-50.
[16] Grogan G. Biotransformations [J]. Annual Reports Section "B" (Organic Chemistry), 2011, 0(107): 199-225.
[17] Cui J N, Teraoka R, Ema T, et al. Highly regio- and ennatioselective reduction of 1-chloro-2,4-alknaediones using baker’s yeast: Effects of organic solvents as additives [J]. Tetrahedron Lett, 1997, 38(17): 3021-3024.
[18] Cui J N, Teraoka R, Ema T, et al. Control of ennatioselectivity in the Baker's Yeast asymmetric reduction of γ-chloro-β-diketones to γ-chloro-β-hydroxyl-ketones [J]. Tetrahedron: Asymmetry, 1998, 52(29): 2681-2692.
[19] Nie G J, Cai W L, Yao Z Y, et al. Changing enzymatic conformation in organic media with pH buffer lyophilized powder [J]. Catalysis Communications, 2015, 0(65): 62-65.
[20] Wu X, Zhang C, Orita I, et al. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols [J]. Appl Environ Microbiol, 2013, 79(7): 2209-2217.
[21] Rotthaus O, Kruger D, Demuth M, et al. Reduction of keto esters with Baker’s Yeast in organic solvents-A comparison with the results in water [J]. Tetrahedron Lett, 1997, 53(3): 935-938.
[22] Sethi M K, Bhandya S R, Kumar A, et al. Chemo-enzymatic synthesis of optically pure rivastigmine intermediate using alcohol dehydrogenase from baker's yeast [J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 0(91) : 87-92.
[23] Smidt O D, James C, Albertyn J. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae [J]. FEMS Yeast Res, 2012, 12(1): 33-47.
[24] J?rnvall H. The primary structure of yeast alcohol dehydrogenase [J]. European Journal of Biochemistry, 1977, 3(72): 425-442.
[25] Bennetzen J L, Hall B D. The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase [J]. Journal of Biological Chemistry, 1982, 6(257): 3018-3025.
[26] Russell D W, Smith M, Williamson V M, et al. Nucleotide sequence of the yeast alcohol dehydrogenase II gene [J]. The Journal of Biological Chemistry, 1983, 4(258): 2674-2682.
[27] Young E T, Pilgrim D. Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1985, 5(11): 3024-3034.
[28] Mizuno A, Tabei H, Iwahuti?M. Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to highgravity brewing [J]. Journal of Bioscience and Bioengineering, 2006, 1(101): 31-37.
[29] Marco A, Berg V D, Jong-Gubbels P D, et al. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetylcoenzyme A metabolism [J]. Yeast, 1998, 2(14): 1089-1104.
[30] Drewke C, Thielen J, Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehydereducing activity in Saccharomyces cerevisiae [J]. J Bacteriol, 1990, 7(172): 3909-3917.
[31] González E,??Fernández M R,??Larroy C, et al. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene [J]. Biol Chem, 2000, 46(275): 35876-35885.
[32] Carol L,?Xavier P,?Biosca J A. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family [J]. European Journal of Biochemistry, 2002, 22(269): 5738-5745.
[33] 许松伟, 姜忠义, 吴洪. 醇脱氢酶结构和作用机理研究进展 [J]. 有机化学, 2005, 25(6): 629-633.
Xu S W, Jiang Z Y, Wu H. Progress in Structure and Kinetic Mechanism of Alcohol Dehydrogenase [J]. Chin J Org Chem, 2005, 25(6): 629-633.
[34] Sudar M,?Valinger D,?Findrik Z, et al. Effect of different variables on the efficiency of the Baker's yeast cell disruption process to obtain alcohol dehydrogenase activity [J]. Appl Biochem Biotechnol, 2013, 169(3): 1039-1055.
[35] Makoto Y,?Mami S,?Noriko Y, et al. Liposomal encapsulation of yeast alcohol dehydrogenase with cofactor for stabilization of the enzyme structure and activity [J]. Biotechnology Progress, 2008, 24(3): 576-582.
[36] Park Y C, Na-Rae Yun N R, San K Y, et al. Molecular cloning and characterization of the alcohol dehydrogenase ADH1 gene of Candida utilis ATCC 9950 [J]. Journal of Industrial Microbiology and Biotechnology, 2006, 12(33): 1032-1036.
[37] Giersberg M,?Degelmann A,?Bode R, et al. Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor(R)2 transformation/ platform [J]. J Ind Microbiol Biotechnol, 2012, 39(9): 1385-1396.
[38] Ishii J, Yoshimura K, Hasunuma T, et al. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway [J]. Appl Microbiol Biotechnol, 2013, 97(6): 2597-2607.
[39] Ganzhorn A J, Plapp B V. Carboxyl groups near the active site zinc contribute to catalysis in yeast alcohol dehydrogenase [J]. Journal of Biological Chemistry, 1988, 263(11): 5446-5454.
[40] Han P P, Song X K, Wu H, et al. Enhancing Catalytic Activity and Stability of Yeast Alcohol Dehydrogenase by Encapsulation in Chitosan-Calcium Phosphate Hybrid Beads [J]. Industrial and Engineering Chemistry Research, 2015, 54(2): 597-604.
[41] 李泳宁. 酵母细胞催化的(S)-2-辛醇的不对称合成研究 [D]. 福州: 福州大学. 2006: 54-69.
Li Y N. Asymmetric Synthesis of (S)-2-octanol Catalyzed by Saccharomyces Cerevisiae [D]. FuZhou: Fuzhou University. 2006: 54-69.
[42] 张强, 袁静明. 醇引起酵母醇脱氢酶构象变化的光谱研究 [J]. 光谱学与光谱分析, 1998, 18(1): 30-33.
Zhang Q, Yuan J M. Spectral study of the conformational change of yeast alcohol dehydrogenase induced by alcohol [J]. Spectroscopy and Spectral Analysis, 1998, 18(1): 30-33.
[43] 倪宏亮, 姚善泾. 选择性抑制面包酵母中R型酶的溶剂效应 [J]. 浙江大学学报(工学版), 2007, 41(8): 1374-1377.
Ni H L, Yao S J.Solvent effect to selective inhibition of R-enzymes in Baker's yeast [J]. Journal of Zhejiang University(Engineering Science), 2007, 41(8): 1374-1377.
[44] Vladimir L, Svetlana T, Draginja P. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae [J]. FEMS Yeast Research, 2002, 2(4): 481-494.
[45] Tetsuo T, Akiyama K, Nobuaki U, et al. Asymmetric reduction of a ketone by knockout mutants of a cyanobacterium [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 60(1-2): 93-95.
|