[1] Frost J W, Niu W. Microbial synthesis of D-1,2,4-butanetriol: KR20097002093 [P]. 2009-01-30.
[2] Li X H, Cai Z, Li Y, et al. Design and construction of a non-natural malate to 1,2,4-Butanetriol pathway creates possibility to produce 1,2,4-Butanetriol from glucose[J]. Sci. Rep., 2014,4(1): 5541-5542.
[3] Cao Y J, Niu W, Guo J T, et al. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass[J]. Sci. Rep., 2015,5(1): 18149-18150.
[4] Sun L, Yang F, Sun H B, et al. Synthetic pathway optimization for improved 1,2,4?butanetriol production[J]. J. Ind. Microbiol. Biotechnol., 2016,43(1): 67-78.
[5] Gouranlou F, Kohsary I. Synthesis and characterization of 1,2,4-butanetrioltrinitrate[J]. Asian J. Chem., 2010, 22(6): 4221-4228.
[6] Niu W, Molefe M N , Frost J W. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol [J]. J. Am. Chem. Soc., 2013,125(43): 12998-12999.
[7] Zingaro K A, Papoutsakis E T. GroESL over imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns [J]. Metab. Eng., 2013, 15(1): 196-205.
[8] Tandon V K, Leusen A M V, Wynberg H. Synthesis of enantiomerically pure (S)-(+)-3-hydroxytetrahydrofuran, and its (R)-enantiomer, from malic or tartaric acid [J]. J. Org. Chem., 1983, 48(1): 2767-2769.
[9] Adkins H, Billica H R. The hydrogenation of esters to alcohols at 25-150 oC [J]. J. Am. Chem. Soc., 1948, 70(9): 3121-3125.
[10] Valdehuesa K N G, Liu H W. Ramos K R M, et al. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli [J]. Proc. Biochem., 2014, 49(1): 25-32.
[11] Zhang Y M, Luo J, Zhao X B, et al. A novel strategy for 1,3-propanediol recovery from fermentation broth and control of product colority using scraped thin-film evaporation for desalination [J]. RSC Adv., 2015 ,5(60): 48269-48270.
[12] Qureshi N, Meagher M M, Hutkins R W. Recovery of 2,3-butanediol by vacuum membrane distillation [J]. Sep. Sci. Technol., 1994,29(13): 1733-1748.
[13] Malinowski J J. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol [J]. Biotechnol. Tech., 1999, 13(2): 127-130.
[14] Malinowski J J. Reactive extraction for downstream separation of 1,3-propanediol, Biotechnol [J]. Prog., 2000, 16(1): 76-79.
[15] Li Y J, Wu Y Y, Zhu J W, et al. Separation of 2,3-butanediol from fermentation broth by reactive extraction using acetaldehyde-cyclohexane system [J]. Biotechnol. Biopro. Eng., 2012, 17(2): 337-345.
[16] Hao J, Liu H J, Liu D H. Novel route of reactive exraction to recover 1,3-propanediol from a dilute aqueous solution [J]. Ind. Eng. Chem. Res., 2005, 44(12): 4380-4385.
[17] Dai J Y, Sun Y Q, Sun L H, et al. Research progress of bio-based chemical 2,3-Butanediol [J]. Chin. J. Process Eng., 2010, 10(1): 200-208.
[18] Nanda M R, Yuan Z S, Qin W S, et al. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive [J]. Fuel, 2014, 117(1): 470-477.
[19] Chopade S P, Sharma M M. Acetalization of ethylene glycol with formaldehyde using cation-exchange resins as catalysts: batch versus reactive distillation [J]. React. Funct. Polym., 1997, 34(1): 37-45.
[20] Agirre I, García I, Requies J, et al. Glycerol acetals, kinetic study of the reaction between glycerol and formaldehyde [J]. Biomass Bioenerg., 2011, 35(8): 3636-3642.
[21] Agirre I, Güemez M B, Ugarte A, et al. Glycerol acetals as diesel additives: Kinetic study of the reaction between glycerol and acetaldehyde [J]. Fuel Proc. Technol., 2013, 116(12): 182-188.
[22] Silva P H R, Gon?alves V L C, Mota C J A. Glycerol acetals as anti-freezing additives for biodiesel [J].Bioresour. Technol., 2010, 101(15): 6225-6229.
[23] Rahaman M, Gra?a N S, Pereira C S M, et al. Thermodynamic and kinetic studies for synthesis of the acetal (1,1-diethoxybutane) catalyzed by Amberlyst 47 ion-exchange resin [J]. Chem. Eng. J., 2015, 264(15): 258-267.
[24] Silva V M T M, Rodrigues A E. Synthesis of diethylacetal: thermodynamic and kinetic studies [J]. Chem. Eng. Sci., 2001, 56(4): 1255-1263.
[25] Chen B. Hydrolytic stabilities of halogenated disinfection byproducts: review and rate constant quantitative structure-property relationship analysis [J]. Environ. Eng. Sci., 2011, 28(6): 385-394.
[26] Kreevoy M K, Taft R W. The evaluation of inductive and resonance effects on reactivity. I. hydrolysis rates of acetals of non-conjugated aldehydes and ketones [J]. J. Am. Chem. Soc., 1955, 77(21): 5590-5595.
[27] Taft R W. The general nature of the proportionality of polar effects of substituent groups in organic chemistry [J]. J. Am. Chem. Soc., 1953, 75(17): 4231-4238.
[28] Neuvonen K, Neuvonen H, Koch A, et al. Taft equation in the light of NBO computations. Introduction of a novel polar computational substituent constant scale for sigma(q)* alkyl groups [J]. Comput. Theor. Chem., 2012, 981(1): 52-58.
[29] Neuvonen K, Neuvonen H, Koch A, et al. Nature of the steric ΩS, ER and source substituent constants. Comparison with the aid of NBO and STERIC analysis [J]. Comput. Theor. Chem., 2013, 1015(4): 34-43.
|