[1] 金涌,俞芷青,张礼,等. 流化床反应器塔形内构件的研究[J]. 化工学报, 1980, 31(2): 117-128.
Jin Y, Yu Z Q, Zhang L, et al. Research on Tower-Shaped Internals of Fluidized Bed Reactor[J]. CIESC Journal , 1980, 31(2): 117-128.
[2] 杨帅. 内构件鼓泡流化床中流动结构及其计算机模拟研究[D]. 北京: 中国科学院大学, 2016.
Yang S. Flow Structure Investigation and Computational Fluid Dynamics Simulation for Baffled Bubbling Fluidized Beds[D]. BeiJing: University of Chinese Academy of Sciences, 2016.
[3] 董群,贾昭,王丽,等. 催化裂化流化床内构件的研究进展[J]. 化工进展, 2010, 29(9): 1609-1614.
Dong Q, Jia Z, Wang L, et al. An Qutline for Inner-Loop Studies in FCC Fluidized Bed[J]. Chemical Industry and Engineering Progress, 2010, 29(9): 1609-1614.
[4] 严枭,王子健,卢春喜. 环隙下料式流化床-提升管耦合反应器的内截面压力特性[J]. 过程工程学报, 2016, 16(6):909-914.
Yan X, Wang Z J, Lu C X. Axial Distribution of Pressure in Annular Fluidized Bed?Riser Coupled Reactor [J]. The Chinese Journal of Process Engineering, 2016, 16(6): 909-914.
[5] 董群,贾昭,王淑彦. 垂直筛板流化床中FCC催化剂的流化性能[J]. 过程工程学报, 2012, 12(4): 558-562.
Dong Q, Jia Z, Wang S Y. Hydrodynamic Performance of Fluidized Bed with Vertical Sieve Tray[J]. The Chinese Journal of Process Engineering, 2012, 12(4): 558-562.
[6] 王若艺,刘对平,李智,等. 细颗粒气固流化床内斜片挡板受力特性的实验研究[J]. 过程工程学报, 2015, 15(3): 375-380.
Wang R Y, Liu D P, Li Z, et al. Experimental Study on the Acting Forces on a Single Slant Slat Immersed in a Gas and Fine Particles Fluidized Bed[J]. The Chinese Journal of Process Engineering, 2015, 15(3): 375-380.
[7] 张永民,卢春喜,时铭显. 导向挡板布置方式与结构参数对细颗粒湍动流化床流动特性的影响[J]. 石油炼制与化工, 2007, 38(7): 64-69.
Zhang Y M, Lu C X, Shi M X. Effect of Structure Parameters and Arrangement of Louber Baffles on the Hydrodynamics Performance of Fine Particles in Turbulent Fluidized Bed [J]. Petroleum Processing and Petrochemicals, 2007, 38(7): 64-69.
[8] 张永民,王红梅,卢春喜,等. 导向挡板对催化裂化颗粒湍动流化床流动特性的影响[J]. 中国石油大学学报(自然科学版), 2008, 32(4): 118-122.
Zhang Y M, Wang H M, Lu C X, et al. Effects of Louvre Baffles on Hydrodynamic Properties of Turbulent Fluidized Beds of FCC Particles [J]. Journal of China University of Petroleum, 2008, 32(4): 118-122.
[9] 朱晓,沈来宏. 塔式鼓泡床内的渗涌流动特性[J]. 化工学报, 2017, 68(11): 4112-4120.
Zhu X, Shen L H. Characteristics on Gushing in a Tower Bubbling Fluidized Bed [J]. CIESC Journal, 2017, 68(11): 4112-4120.
[10] 王丽瑶,唐猛,张少峰,等. 立体旋流筛板并流时的流型特征及其操作域[J]. 化学工程, 2017, 45(12): 21-25+29.
Wang L Y, Tang M, Zhang S F, et al. Flow Patterns Characteristics and Operating Regions of a Tridimensional Rotational Flow Sieve Tray in Concurrent Flow [J]. Chemical Engineering, 2017, 45(12): 21-25+29.
[11] Baeyens J, Geldart D. An Investigation into Slugging Fluidized Beds [J]. Chemical Engineering Science, 1974, 29 (1): 255-265.
[12] Stewart P S B, Davidson J F. Slug Flow in Fluidized Beds [J]. Powder Technology, 1967, 1 (2): 61-80.
[13] Chen Y M, Lim C J, Grace J R, et al. Characterization of Pressure Fluctuations from a Gas–Solid Fluidized Bed by Structure Density Function Analysis [J]. Chemical Engineering Science, 2015, 129(6): 156-167.
[14] Nelson B H, Briens C L, Bergougnou M A. Pressure Fluctuations at Individual Grid Holes of a Gas-Solid Fluidized Bed [J]. Powder Technology, 1993, 77(1): 95-102.
[15] Zhang Y L, Xiao R, Ye M, et al. A Numerical Study of the Bubble Induced Pressure Fluctuation in Gas-Fluidized Beds [J]. Powder Technology, 2017, 314 : 387-399.
[16] Liu M X, Zhang Y M, Bi H, et al. Non-Intrusive Determination of Bubble Size in a Gas–Solid Fluidized Bed: An Evaluation [J]. Chemical Engineering Science, 2010, 65(11): 3485-3493. |