[1] Lütjering G , Williams J C. Titanium[M]. Springer Berlin Heidelberg, 2007.
[2] Lu K. The future of metals[J]. Science, 2010. 328(5976): 319-320.
[3] Reed T B. Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations[J]. Joural of the Electrochemical Society, 1971, 119(12).
[4] Kroll W. The production of ductile titanium[J]. Tr.electrochem.soc, 1940, 78(1Pt1): L175.
[5] Hunter M A. Metallic titanium[J]. J.am.chem.soc, 1910, 32(3):330-336.
[6] Mo W. Titanium metallurgy. 1998: Metallurgical Industry Press.
[7] Seetharaman S. Treatise on process metallurgy[M], Volume 3: Industrial Processes. Vol. 3. 2013: Newnes.
[8] Kasparov S A, Klevtsov A G, Cheprasov A I, Moxson V S, Duz V A. Semi-continuous magnesium-hydrogen reduction process for manufacturing of hydrogenated, purified titanium powder: US 8007562 B2[P], 2011-08-30.
[9] Doblin C, Chryss A, Monch A. Titanium powder from the TiROTM process[J]. Key Engineering Materials, 2012, 520: 95-100.
[10] Hansen D A, Gerdemann S J. Producing titanium powder by continuous vapor-phase reduction[J]. JOM, 1998, 50(11): 56-58.
[11] Vuuren D V, Oosthuizen S J, Heydenrych M D. Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products[J]. The journal of the southern african instiute of mining and metallurgy, 2011, 111: 141-148.
[12] Crowley G. How to extract low-cost titanium: a new process for titanium extraction and production promises to cut costs and expand applications[J]. Advanced materials & processes, 2003, 161(11): 25-27.
[13] Chen W, Yamamoto Y, Peter W H. Investigation of pressing and sintering processes of CP-Ti powder made by armstrong process[J]. Key Engineering Materials, 2010, 436: 123-130.
[14] Gerdemann S J, Oden L L, White J C. Continuous production of titanium powder[J], in Proc. 1997 Materials Week 'Titanium extraction and processing', ed. by B. Mishra, G.J. Kipouros (TMS, Indianapolis, IN, 1997), pp. 49-54.
[15] Bordbar H, Yousefi A A, Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores: a review. Polyolefins Journal, 2017. 4(2): 149-173.
[16] Coughlin J P. Contributions to the data on theoretical metallurgy. XII. Heats and free energies of formation of inorganic oxides[J]. US Government Printing Office, 1954, 542.
[17] Mah A D, et al. Thermodynamic properties of titanium-oxygen solutions and compounds. 1955, Bureau of Mines.
[18] Okabe T H, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys & Compounds, 2004, 364(1): 156-163.
[19] Suzuki R O, Inoue S. Calciothermic reduction of titanium oxide in molten CaCl2[J]. Metallurgical & Materials Transactions B, 2003, 34(3): 277-285.
[20] Park I, Abiko T, Okabe T H. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR)[J]. Journal of Physics and Chemistry of Solids, 2005, 66(2): 410-413.
[21] Henrie T A, Henry D, Kleespies E K. Magnesium reduction of titanium oxides in a hydrogen atmosphere: US 3140170 A[P], 1964-07-07.
[22] Nersisyan H H, Lee J H, Won C W. Combustion of TiO2-Mg and TiO2-Mg-C systems in the presence of NaCl to synthesize nanocrystalline Ti and TiC powders[J]. Materials Research Bulletin, 2003, 38(7): 1135-1146.
[23] Eshed M, Irzh A, Gedanken A. Reduction of titanium dioxide to metallic titanium conducted under the autogenic pressure of the reactants[J]. Inorganic Chemistry, 2009, 48(15): 7066.
[24] Won C W, Nersisyan H H, Won H I. Titanium powder prepared by a rapid exothermic reaction[J]. Chemical Engineering Journal, 2010, 157(1): 270-275.
[25] Zhang Y, Fang Z Z, Xia Y, et al. A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag[J]. Chemical Engineering Journal, 2016, 286: 517-527.
[26] Fisher R L. Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier: US 4923531[P], 1990- 05-08.
[27] Suzuki R O, Saguchi A, Takahashi W, et al. Recycling and high performance waste processing. Recycling of rare earth magnet scraps: Part II. Oxygen removal by calcium[J]. Materials Transactions Jim, 2001, 42(12): 2492-2498.
[28] Okabe T H, Oishi T, Ono K. Preparation and characterization of extra-low-oxygen titanium[J]. Journal of Alloys & Compounds, 1992, 184(1): 43–56.
[29] Oh J M, Lee B K, Suh C Y, et al. Deoxidation of Ti powder and preparation of Ti ingot with low oxygen concentration[J]. Materials Transactions, 2012, 53(6): 1075-1077.
[30] Xia Y, Fang Z Z, Sun P, et al. The effect of molten salt on oxygen removal from titanium and its alloys using calcium[J]. Journal of Materials Science, 2017, 52(7): 4120-4128.
[31] Zhang Y, Fang Z Z, Sun P, et al. Thermodynamic destabilization of Ti-O Solid Solution by H2 and deoxygenation of Ti using Mg[J]. Journal of the American Chemical Society, 2016, 138(22): 6916-6919.
[32] Xia Y, Fang Z Z, Zhang Y, et al. Hydrogen assisted magnesiothermic reduction (HAMR) of commercial TiO2 to produce titanium powder with controlled morphology and particle size[J]. Materials Transactions, 2017, 58(3).
[33] Zhang Y, Fang Z Z, Sun P, et al. Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt[J]. Chemical Engineering Journal, 2017, 327: 169-182.
[34] Jonas K, New York, N. Y. Cyclic process for the manufacture of titanium-aluminum alloys and regeneration of intermediates thereof: US 8532555A[P], 1958-06-03.
[35] 王武育, 氟盐铝热还原法制取海绵钛的研究[J]. 稀有金属, 1996(3):169-171.
Wang W, Study on extraction of titanium sponge by thermal-reduction method of fluorine salts [J]. Rare metals, 1996(3):169-171.
[36] 冯乃祥,赵坤,王耀武,等. 两段铝热还原制取钛或钛铝合金并副产无钛冰晶石的方法:WO 2017012185 A1[P].2017-01-26.
Feng N, Zhao K, Wang Y, et al. Preparation of titanium or titanium alloy by thermal-reduction in two-stage aluminum :WO 2017012185 A1[P].2017-01-26
[37] Zhao K, Feng N, Wang Y. Fabrication of Ti-Al intermetallics by a two-stage aluminothermic reduction process using Na2TiF6[J]. Intermetallics, 2017, 85: 56-162.
|