[1] 黄鑫, 曹景沛, 王敬贤,等. 污水污泥快速热解过程中氮迁移规律研究[J]. 中国矿业大学学报, 2016, 45(1):176-181.
[2] 谭涛, 崔燕妮, 周岩枫,等. 微波热解污泥过程中NOx前驱物产生影响因素[J]. 哈尔滨商业大学学报(自然科学版), 2011, 27(5):667-670.
[3] 王宗华, 张军营, 赵永椿,等. 污泥热解和气化过程中NO_x前驱物的释放特性[J]. 华中科技大学学报(自然科学版), 2011(1):98-101.
[4] 郝菊芳, 王洪波, 曹得坡,等. 升温速率对氨基酸裂解生成含氮气体的影响研究[J]. 化学研究与应用, 2013(7):981-986.
[5] Zhou P, Xiong S, Zhang Y, et al. Study on the nitrogen transformation during the primary pyrolysis of sewage sludge by Py-GC/MS and Py-FTIR[J]. International Journal of Hydrogen Energy, 2017.
[6] Lin Y, Liao Y, Yu Z, et al. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS[J]. Energy Conversion & Management, 2017, 151:190-198.
[7] 张军. 微波热解污水污泥过程中氮转化途径及调控策略[D].哈尔滨工业大学,2013.
[8] Ratcliff M A, Johnson D K, Posey F L, et al. Hydrodeoxygenation of lignins and model compounds[J]. Applied Biochemistry & Biotechnology, 1988, 17(1-3):151-160.
[9] Karl-Martin Hansson, et al. Pyrolysis of poly--leucine under combustion-like conditions ☆[J]. Fuel, 2003, 82(6):653-660..
[10] 黄金保, 刘朝, 曾桂生,等. 左旋葡聚糖热解机理的密度泛函理论研究[J]. 燃料化学学报, 2012, 40(7):807-815.
[11] 黄金保. 纤维素快速热解机理的分子模拟研究[D]. 重庆大学, 2010.
[12] Liang J. Application of Gaussian09 in Structural Chemistry Teaching: Optimizing the Structure of Molecule[J]. Guangdong Chemical Industry, 2017.
[13] Becke A D. Density‐functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7):5648-5652.
[14] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B Condensed Matter, 1988, 37(2):785.
[15] 黄晓露. 木质素模型化合物热解的微观机理研究[D]. 重庆大学, 2012..
[16] Jr R M, Medley E E, Simmonds P G. Pyrolysis of amino acids. Mechanistic considerations.[J]. Chemischer Informationsdienst, 1974, 5(40):1481.
[17] 黎新.α-丙氨酸热分解机理的从头算研究[J].渝西学院学报(自然科学版),2002(03):32-35.
[18] 徐晓赫, 陈小耘, 黎新. α-丙氨酸热分解机理的AM1研究[J]. 重庆文理学院学报, 2000(1):67-68.
[19] 罗海银. 基于量子化学理论的木质素热裂解中环类化合物形成机理的研究[D]. 长沙理工大学, 2015.
[20] 黄金保, 刘朝, 魏顺安,等. 丙三醇脱水反应机理的密度泛函理论研究[J]. 化学学报, 2010, 68(11):1043-1049.
[21] 翁诗甫. 傅里叶变换红外光谱分析[M]. 化学工业出版社, 2010.
[22] Jr M A R, Medley E E, Simmonds P G. Pyrolysis of amino acids. Mechanistic considerations[J]. Chemischer Informationsdienst, 1974, 39(11):1481.
[23] Johnson W R, Kan J C. Mechanisms of hydrogen cyanide formation from the pyrolysis of amino acids and related compounds[J]. Journal of Organic Chemistry, 1971, 36(1):189-192.
[24] Hansson K M, Samuelsson J, Tullin C, et al. Formation of HNCO, HCN, and NH3, from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion & Flame, 2004, 137(3):265-277.
|