欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (3): 375-395.DOI: 10.12034/j.issn.1009-606X.222027

• 面向“双碳”目标的流程再造专栏 • 上一篇    下一篇

二氧化碳甲烷化催化剂及反应机理研究进展

田郡博1,2,3, 古芳娜2*, 苏发兵2,3, 张战国1,3, 许光文1,3
  

  1. 1. 沈阳化工大学资源化工与材料教育部重点实验室,辽宁 沈阳 110142 2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 3. 沈阳化工大学能源与化工产业技术研究院,辽宁 沈阳 110142
  • 收稿日期:2022-01-19 修回日期:2022-04-02 出版日期:2023-03-28 发布日期:2023-03-28
  • 通讯作者: 古芳娜 fngu@ipe.ac.cn
  • 作者简介:田郡博,硕士研究生,化学工程与技术专业,E-mail: tianjunbo311@163.com;通讯联系人,古芳娜,副研究员,主要研究领域为二氧化碳甲烷化催化剂,E-mail: fngu@ipe.ac.cn
  • 基金资助:
    国家自然科学基金

CO2 methanation: recent advances in catalyst development and reaction mechanistic study

Junbo TIAN1,2,3,  Fangna GU2*,  Fabing SU2,3,  Zhanguo ZHANG1,3,  Guangwen XU1,3   

  1. 1. Key Laboratory on Resources Chemicals and Materials of Ministry Education, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China 2. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
  • Received:2022-01-19 Revised:2022-04-02 Online:2023-03-28 Published:2023-03-28
  • Supported by:
    National Natural Science Foundation of China

摘要: 在“双碳”目标的背景下,明确碳处理路径至关重要。利用可再生能源制得的氢,将二氧化碳(CO2)通过甲烷化反应制备合成天然气(SNG)被广泛认为是一种高效、有前景的碳捕集利用技术,有望实现碳循环利用。近年来,二氧化碳甲烷化催化剂及相关反应机理均取得了许多新进展。鉴于此,本工作对该反应进行了系统的综述。首先,介绍了CO2甲烷化反应的热力学研究中不同反应条件的影响;随后从活性金属、载体、制备方法及辅助技术等四方面介绍了CO2甲烷化催化剂的研究进展,其中活性组分包括非贵金属基(Ni, Fe, Co和Mo)和贵金属基(Ru, Rh, Pt和Pd),载体包括传统氧化物(Al2O3, SiO2, TiO2, ZrO2和CeO2)和新型载体材料(金属有机框架和碳基材料),催化剂制备方法包括传统制备方法(浸渍法、共沉淀法、水热法、溶胶-凝胶法和固相合成法)和合成辅助技术(超声波、微波和等离子体等);总结了CO2甲烷化反应遵循的两条机理路径(甲酸盐路径和CO路径),并指出CO2甲烷化的具体反应途径与催化剂表面特性(如羟基丰富度和O2-位点)和反应条件(如反应温度和压力)相关;最后提出了当前研究存在的挑战,并对研究前景作出展望。

关键词: CO2甲烷化, 热力学, 催化剂, 制备方法, 反应机理

Abstract: Choosing a suitable approach for CO2 utilization is crucial to achieving carbon neutrality and carbon peak goals as early as possible. Synthesis of synthetic natural gas (SNG) by methanation of CO2 using hydrogen produced from renewable energy is widely regarded as an efficient and promising carbon capture and utilization technology, which is expected to realize carbon recycling. Considering the importance of CO2 methanation, we provide a systematic review of the latest studies. Firstly, the effect of different reaction conditions on CO2 methanation is introduced from the perspective of thermodynamics. Secondly, the research progress of CO2 methanation catalysts is reviewed from four aspects: active metal, support, preparation method, and assistive technology. In detail, the active components are classified into cheap metal-based (Ni, Fe, Co, and Mo) and noble metal-based (Ru, Rh, Pt, and Pd) materials, and the supports are divided into the conventional oxides (Al2O3, SiO2, TiO2, ZrO2, and CeO2) and the supports with novel structures (e.g., metal-organic frameworks and carbon-based materials), which are all discussed and evaluated in depth. The preparation methods of catalyst are classified as the conventional ones (such as impregnation, coprecipitation, hydrothermal, sol-gel, and solid-phase synthesis) and unconventional ones. The latter includes three technologies such as ultrasound, microwave, and plasma, which can speed up the synthesis and reaction process and facilitate the high dispersion of the active components on the supports. Subsequently, two reaction mechanisms in CO2 methanation (the formate and CO pathways) are discussed. The specific reaction pathway for CO2 methanation is related to the properties of the catalyst surface (e.g., hydroxyl abundance, adsorbed O2- sites) and the reaction conditions (e.g., reaction temperature and pressure). Finally, current research challenges are put forward, and the prospects for future research in this area are made.

Key words: CO2 methanation, thermodynamics, catalyst, preparation method, reaction mechanism