欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (10): 1325-1332.DOI: 10.12034/j.issn.1009-606X.222325

• 综述 • 上一篇    下一篇

过程工程所流化床直接还原技术研究进展

范川林, 杜占, 潘锋, 邹正, 李军, 李洪钟, 朱庆山*
  

  1. 中国科学院过程工程研究所, 北京 100190
  • 收稿日期:2022-09-09 修回日期:2022-10-01 出版日期:2022-10-28 发布日期:2022-10-26
  • 通讯作者: 朱庆山 qszhu@ipe.ac.cn
  • 作者简介:范川林(1983-),男,广西省陆川县人,博士,副研究员,冶金工程专业,E-mail: chlfan@ipe.ac.cn;通讯联系人,朱庆山,E-mail: qszhu@ipe.ac.cn.
  • 基金资助:
    钒钛磁铁矿钛资源高效利用化学工程基础研究

Research progress of fluidized bed direct reduction at Institute of Process Engineering

Chuanlin FAN,  Zhan DU,  Feng PAN,  Zheng ZOU,  Jun LI,  Hongzhong LI,  Qingshan ZHU*   

  1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-09-09 Revised:2022-10-01 Online:2022-10-28 Published:2022-10-26
  • Contact: ZHU Qing-shan qszhu@ipe.ac.cn

摘要: “双碳”背景下,钢铁工业亟待低碳重塑,氢气直接还原(常称为“氢冶金”)是国内外竞相研发的重要方向。流态化直接还原是过程工程所六十多年来一直坚持的研究方向。值此叶渚沛先生诞辰120周年之际,本综述回顾并概述了过程工程所在流态化直接还原基础理论和工业应用两方面所取得的一系列重要成果。基础理论方面包括颗粒间黏着力与分离力相互竞争黏结机制、聚团流化和慢速失流的发现、不同铁形貌析出机理和黏结特性,以及降低颗粒间黏结力(颗粒包覆改性、调控铁析出形貌)和增大颗粒间分离力(增强颗粒运动、增大颗粒尺寸、施加外场力)等一系列抑制黏结失流方法;工业应用方面包括100公斤/天流化床氢气直接还原、1吨/天钒钛磁铁矿流化床直接还原和千吨级钒钛磁铁矿直接还原-电炉熔分等中间试验,目前正在与鞍钢集团等单位合作开展全球首套1万吨直接还原铁/年流化床绿氢直接还原工程示范。谨以此文缅怀叶渚沛先生、郭慕孙先生等老一辈科学家,以期推动流化床直接还原基础理论和技术研发的进步,为钢铁工业低碳重塑贡献智慧和力量。

关键词: 流化床直接还原, 氢冶金, 黏结机理, 抑制方法, 工程示范

Abstract: Under the background of carbon peaking and carbon neutrality, iron and steel industry urgently needs low-carbon reconstruction. Hydrogen direct reduction (usually called "hydrogen metallurgy") is an important research field in the domestic and overseas. Fluidized bed (FB) direct reduction has been the research direction at Institute of Process Engineering (IPE) for more than 60 years. On the occasion of commemorating the 120th anniversary of Professor Chu-Phay Yap's birth, this work reviews and summarizes a series of important achievements on basic researches and industrial applications of FB direct reduction at IPE. In the basic researches respect, the competition of adhesive force and rupturing force for particle sticking, the behaviors of agglomerate fluidization and slow defluidization, the growth mechanisms and sticking characteristics of newly formed iron with different morphologies were revealed; and a series of methods for anti-defluidization were successively established, including particle coating and iron morphology regulation to reduce the adhesive force, and enhance particle motion, particle size increase, using external field forces to increase the rupturing force. Furthermore, several pilot plants with various iron ores were constructed and operated to promote the industrial application of new technologies, including hydrogen FB direct reduction of 100 kg/d iron ore concentrate, 1 t/d vanadium bearing titanomagnetite and FB direct reduction-electric furnace smelting of 2000 t/a vanadium bearing titanomagnetite. Currently, IPE is cooperating with Ansteel Group to establish the world's first FB direct reduction pilot plant of 10 000 t-DRI/a using green hydrogen. This paper aims to commemorates Professor Chu-Phay Yap, Professor Mooson Kwauk and other scientists of the older generation, and also to propel advance of basic theory and technology in FB direct reduction, for promotion of the low-carbon development for the iron and steel industry of China.

Key words: fluidized bed direct reduction, hydrogen metallurgy, sticking mechanism, inhibition methods, engineering demonstration