欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (8): 1131-1136.DOI: 10.12034/j.issn.1009-606X.223107

• 新能源产业发展专栏 • 上一篇    下一篇

千瓦级铝空电池用含Ti阳极材料的研究

徐聪1, 房新月1, 孔敏2,3*, 王瑞智2,3, 张钧2,3, 卢广玺1, 胡俊华1*, 关绍康1   

  1. 1. 郑州大学材料科学工程学院,河南 郑州 450001 2. 郑州佛光发电设备股份有限公司,河南 郑州 450001 3. 河南省金属燃料电池重点实验室,河南 郑州 450001
  • 收稿日期:2023-04-10 修回日期:2023-07-03 出版日期:2023-08-28 发布日期:2023-09-01
  • 通讯作者: 孔敏 2425075862@qq.com

Study on aluminum anode with different Ti addition for kW-grade aluminum-air batteries

Cong XU1,  Xinyue FANG1,  Min KONG2,3*,  Ruizhi WANG2,3,  Jun ZHANG2,3, Guangxi LU1,  Junhua HU1*,  Shaokang GUAN1   

  1. 1. School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China 2. Zhengzhou Foguang Power Generation Equipment Co., Ltd., Zhengzhou, Henan 450001, China 3. Henan Provincial Key Laboratory for Metal Fuel Battery, Zhengzhou, Henan 450001, China
  • Received:2023-04-10 Revised:2023-07-03 Online:2023-08-28 Published:2023-09-01
  • Contact: kong min 2425075862@qq.com

摘要: 随着科学技术的发展,现代工业与社会发展对电力能源的依赖程度越来越高,先进高效的能源转换技术是发展的关键,新型大功率燃料电池(如铝空气电池)因其具有能量密度高(理论能量密度8100 Wh/kg)、储量丰富、生产成本低、环保无毒等优点而受到众多学者的青睐。本工作通过对千瓦级铝空电池用含Ti阳极材料的系统研究,探明了不同Ti含量(0.03wt%, 0.05wt%, 0.08wt%和0.10wt%)对千瓦级铝空电池用Al-Mg-In阳极材料微观组织、腐蚀行为、电化学行为和放电行为的影响规律。结果表明,随Ti含量增加,Al-Mg-In阳极中纤维状晶粒逐渐细化,晶粒组织逐渐均匀,晶界数目增多,可以为铝空电池提供更多的反应面积。阳极材料的放电反应通道较多,放电活性也随之升高,有助于铝阳极工作电压提升。当Ti添加量超过0.05wt%时会导致Al-Mg-In阳极板材中第二相颗粒数目增多,第二相与基体之间形成“原电池”,加速合金腐蚀,晶界局部溶解从而造成合金耐蚀性能下降,放电性能降低。因此,添加0.05wt% Ti的Al-Mg-In合金具有最佳的耐蚀性和电池放电性能,说明适量的Ti可以优化铝空气电池的性能。

关键词: 阳极材料, Ti元素, 千瓦级铝空电池, 微观组织, 放电

Abstract: With the development of science and technology, modern industry and social development rely more and more on electric energy, advanced and efficient energy conversion technology is the key to the development, of new high-power fuel batteries (such as aluminum-air batteries) because of its high energy density (theoretical energy density 8100 Wh/kg), abundant storage capacity, low production cost, environmental protection, and non-toxic advantages and so on favored by many scholars. However, there are some problems against the application of aluminum anodes, such as high overpotential caused by the attached passivation layer on the surface and high self-corrosion rate in alkaline electrolytes. To address these challenges, many researchers are committed to improving anode performance through microalloying. In this work, the effects of different Ti contents (0.03wt%, 0.05wt%, 0.08wt%, and 0.10wt%) on the microstructure, corrosion behavior, electrochemical behavior, and discharge behavior of Al-Mg-In anode materials for kilowatt-class aluminum-air batteries were investigated systematically. The results show that with the increase of Ti content, the fibrous grains in the Al-Mg-In anode gradually refine, the grain organization gradually becomes uniform, and the increase of the number of grain boundaries can provide more reaction area for the air batteries, and the discharge activity of the anode material will increase with more discharge reaction channels, which will help to increase the working voltage of the aluminum anode. However, when the Ti addition exceeds 0.05wt%, the number of second phase particles in the Al-Mg-In anode sheet will increase, and a "primary battery" will be formed between the second phase and the substrate, which will accelerate the corrosion of the alloy and the local dissolution of grain boundaries, resulting in the decrease of corrosion resistance and discharge performance of the alloy. Therefore, the Al-Mg-In alloy with 0.05wt% Ti has the best corrosion resistance and battery discharge performance, indicating that the appropriate amount of Ti can optimize the performance of aluminum-air batteries.

Key words: Anode material, Ti element, kW-grade aluminum-air battery, microstructure, discharge