欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2024, Vol. 24 ›› Issue (11): 1354-1363.DOI: 10.12034/j.issn.1009-606X.224052

• 研究论文 • 上一篇    下一篇

三维中空多孔Mn2O3纳米球设计制备及储锌性能提升研究

韩世昌, 余水华, 张韩方, 章泽恺, 楚化强*   

  1. 安徽工业大学能源与环境学院,安徽 马鞍山 243002
  • 收稿日期:2024-02-06 修回日期:2024-03-30 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 韩世昌 1428014882@qq.com
  • 基金资助:
    高压环境下2,5-二甲基呋喃对汽油替代燃料层流扩散火焰碳烟生成影响机制研究

Design and preparation of three-dimensional hollow porous Mn2O3 nanosphere for enhanced Zn2+ storage

Shichang HAN,  Shuihua YU,  Hanfang ZHANG,  Zekai ZHANG,  Huaqiang CHU*   

  1. School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243002, China
  • Received:2024-02-06 Revised:2024-03-30 Online:2024-11-28 Published:2024-11-27

摘要: Mn2O3作为水系锌离子电池(AZIBs)的正极材料,因其卓越的储能潜力受到研究者广泛关注。然而,其应用受到材料体积膨胀和锰溶解造成的可逆性较差等因素的制约。针对这些挑战,本研究通过水热法和热处理工艺,成功制备了具有独特三维中空多孔结构的Mn2O3纳米球。这种独特的三维中空多孔结构赋予了Mn2O3更大的比表面积和更优越的离子扩散通道,从而使其具备出色的储锌性能。研究结果表明,在0.1 A/g的电流密度下,Mn-450-2h电极材料展现出高的比容量,达636 mAh/g,在经历了50次充放电循环后其比容量仍保持在330 mAh/g。同时,在0.5 A/g的电流密度下,Mn-450-2h电极材料经过500次循环后,放电比容量能够稳定在100 mAh/g。此外,对电化学储锌机制的详细分析揭示了材料的物理化学特性与其电化学性能之间的关系,为构建先进的锰基氧化物电极材料提供了新的视角和方向。

关键词: Mn2O3, 纳米球, 正极材料, 水系锌离子电池, 电化学性能

Abstract: Manganese sesquioxide (Mn2O3), as an cathode material for aqueous zinc ion batteries (AZIBs), has received extensive attention from researchers due to its excellent energy storage potential. However, its application is constrained by factors such as the volume expansion of the material and the poor reversibility caused by manganese dissolution. In order to overcome these limitations, Mn2O3 nanospheres with a unique three-dimensional hollow porous structure were successfully prepared in this study by the hydrothermal method and heat treatment process. This unique three-dimensional hollow porous structure endowed Mn2O3 with a larger specific surface area and superior ion diffusion channels, resulting in excellent zinc storage properties. The Mn-450-2h electrode materials showed a high discharge specific capacity up to 636 mAh/g at a current density of 0.1 A/g and remain at 330 mAh/g after 50 charge/discharge cycles. Meanwhile, the discharge specific capacity of the Mn-450-2h electrode material can be stabilized at 100 mAh/g after 500 cycles at a current density of 0.5 A/g. In addition, a detailed analysis of the electrochemical zinc storage mechanism revealed the relationship between the physicochemical properties and electrochemical performance of the obtained materials, which provides a new perspective and direction for the construction of advanced manganese-based oxide electrode materials.

Key words: Mn2O3, nanosphere, cathode material, aqueous zinc ion batteries, electrochemical performance