欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (2): 129-141.DOI: 10.12034/j.issn.1009-606X.224200CSTR: 32067.14.jproeng.224200

• 综述 • 上一篇    下一篇

生物固碳效益评价的发展和挑战

王梦蝶, 夏雪, 王丹*, 秦钊, 彭祉尧   

  1. 重庆大学化学化工学院,重庆 400044
  • 收稿日期:2024-06-12 修回日期:2024-07-17 出版日期:2025-02-28 发布日期:2025-02-25
  • 通讯作者: 王丹 dwang@cqu.edu.cn
  • 基金资助:
    国家重点研发计划;国家重点研发计划;国家自然科学基金项目;重庆市杰出青年基金项目;重庆市人社局留创计划创新类项目

Developments and challenges in the evaluation of biological carbon sequestration benefits

Mengdie WANG,  Xue XIA,  Dan WANG*,  Zhao QIN,  Zhiyao PENG   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2024-06-12 Revised:2024-07-17 Online:2025-02-28 Published:2025-02-25

摘要: 空气中二氧化碳(Carbon Dioxide, CO2)浓度逐步上升,全球变暖问题日益严重。目前全球已有120多个国家提出了碳中和目标,碳捕集、碳封存和碳转化技术受到学术界和工业界的高度重视。生物固碳技术因反应条件温和、绿色环保及反应产品应用范围广等特点,在碳中和背景下显示出良好的工业应用潜力。然而,要真正实现可持续发展,必须采用有效评价策略用以量化生物固碳效益。但目前的生物固碳效益评价方法多种多样,缺乏统一的科学评估框架。为了促进生物固碳效益评价的发展,本文综述了基因组规模代谢网络模型(Genome-Scale Metabolic Network Model, GSM)和生命周期评价(Life Cycle Assessment, LCA)在生物固碳评价中的应用,重点分析了这两种方法在生物固碳效益评价中的瓶颈问题。此外,本综述还对生物固碳效益评价的未来发展方向进行了系统展望,阐述了机器学习应用的显著优势,指出了基于原子经济性(Atomic Economy, AE)的科学评估指标,规范了数据获取的基本框架,并分析了构建多层次评估框架的重要突破。

关键词: 生物固碳效益评价, 基因组规模代谢网络, 生命周期评价, 机器学习, 原子经济性, 多层次评价框架

Abstract: With the concentration of carbon dioxide (CO2) in the air rising, the threat of global warming is getting worse. Due to its mild conditions and reaction specificity, the biological carbon sequestration technology shows excellent potential for industrial applications under carbon neutral constraints. However, to be genuinely sustainable, industrial applications must implement low-carbon-footprint technology. Current methods for biological carbon sequestration assessment are few and heterogeneous, with the lack of a harmonized scientific assessment framework. In order to promote the development on the biological carbon sequestration assessment, this article reviews the application of genome-scale metabolic network model (GSM) and life cycle assessment (LCA) in biological carbon sequestration assessment, with a focus on analyzing the bottleneck issues of these two methods in biological carbon sequestration assessment. In addition, this review also provides a systematic outlook on the future development direction of the biological carbon sequestration assessment, elaborates on the significant advantages of machine learning applications, points out the scientificity of evaluation indicators based on atomic economy (AE), standardizes the basic framework for data acquisition, and analyzes important breakthroughs in constructing a multi-level evaluation framework.

Key words: evaluation of biological carbon sequestration benefits, genome-scale metabolic network models, life cycle assessment, machine learning, atomic economy, multi-level evaluation framework