欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (3): 249-260.DOI: 10.12034/j.issn.1009-606X.224243

• 研究论文 • 上一篇    下一篇

基于流固耦合的褶式滤筒脉冲清灰特性的数值模拟

李逸非1, 钱付平2*, 胡文元2, 马骐2, 鲁进利1   

  1. 1. 安徽工业大学建筑工程学院,安徽 马鞍山 243032 2. 安徽工业大学能源与环境学院,安徽 马鞍山 243032
  • 收稿日期:2024-07-25 修回日期:2024-09-25 出版日期:2025-03-28 发布日期:2025-03-28
  • 通讯作者: 钱付平 fpingqian@163.com

Numerical simulation study of pulse soot removal characteristics of pleated cartridge based on fluid-solid coupling

Yifei LI1,  Fuping QIAN2*,  Wenyuan HU2,  Qi MA2,  Jinli LU1   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China 2. School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243032, China
  • Received:2024-07-25 Revised:2024-09-25 Online:2025-03-28 Published:2025-03-28
  • Contact: QIAN Fu-Ping fpingqian@163.com

摘要: 脉冲喷吹气流是滤筒除尘器清灰的主要手段。通过喷吹气流的作用导致滤筒滤芯产生膨胀和抖动,滤筒上的粉尘被剥离并落入灰斗,从而保持滤筒的清洁和高效的过滤性能。为了更好地反映喷吹气流对滤筒滤芯的影响,利用ANSYS Workbench中的静态结构模块(Static Structural)进行滤芯脉冲清灰的流固耦合,通过对比不同喷吹时间、不同喷吹距离下的模拟结果,从而得出喷吹气流对滤筒褶结构部分的影响。先利用Fluent模拟得到滤筒内压力的变化,结果表明,虽在不同喷吹距离下压力在数值上略有不同,但都有着相同的分布趋势:气流沿过滤元件长度方向向下运动并沿径向扩散,并且在滤芯内部静压从底部向上积累,滤芯下部静压相对较大,上部静压相对较小,滤芯内部有明显压力积累的过程。再利用ANSYS Workbench中的静态结构模块将上一步Fluent模拟得出的压力耦合在滤筒的褶结构,在相同时间集下,通过模拟得到滤芯褶皱结构的总变形、弹性应变和最大剪切应力值及其分布规律。在实验范围内,当喷吹距离为150 mm时,气流作用在滤芯褶皱结构的各项参数值最好:总变形为0.133 27 μm,弹性应变为3.018×10-4 μm,最大剪切应力为222.69 Pa。

关键词: 脉冲喷射流场, 侧壁压力, 评价指数, 流固耦合

Abstract: Pulse jet airflow is the main means of cleaning dust in the filter cartridge dust collector. The action of the air jet causes the cartridge filter element to expand and shake, and the dust on the cartridge is peeled off and falls into the ash hopper, thus maintaining the clean and efficient filtration performance of the cartridge. In order to more accurately reflect the impact of the blowing airflow on the filter cartridge, the static structural module (Static Structural) in ANSYS Workbench is employed to perform the fluid-solid coupling of the cartridge pulse soot removal, and the resulting pressure is applied to the cartridge. This allows for the conclusions related to the solid mechanics of the filter cartridge under the pressure of pulse blowing to be drawn. By comparing the simulation results with the same blowing time and different blowing distances, the impact of the blowing airflow on the pleated structure of the cartridge can be determined. Firstly, Fluent simulation is employed to obtain the pressure change within the cartridge. It is observed that although the pressure exhibits slight numerical discrepancies under varying blowing distances, its distribution trend remains consistent: the airflow descends along the length of the filter element and subsequently spreads along the radial direction, the static pressure within the cartridge accumulates from the bottom in an upward trajectory. The lower portion of the cartridge exhibits a relatively elevated static pressure, while the upper section displays a comparatively reduced pressure. The accumulation of pressure within the cartridge is discernible. The static structure module in ANSYS Workbench is employed to couple the pressure derived from the Fluent simulation conducted in the preceding step to the pleated structure of the filter cartridge. This enables the acquisition of the total deformation, elastic strain, and maximum shear stress values of the pleated structure of the filter cartridge and their distribution law through simulation under the same time set. In the experimental range, when the blowing distance is 150 mm, the best values of each parameter of the airflow acting on the pleated structure of the cartridge are obtained: the total deformation is 0.133 27 μm, the elastic strain is 3.018×10-4 μm, and the maximum shear stress is 222.69 Pa.

Key words: pulse-jet flow field, sidewall pressure, evaluation index, fluid-solid coupling