欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (11): 1113-1129.DOI: 10.12034/j.issn.1009-606X.225067

• 综述 • 上一篇    下一篇

过渡金属基催化剂应用于海水电解的研究进展

严茜1#, 陈炳旭1#, 胡中慧1#, 李思达1, 喻嘉1,2*, 王元庆1*   

  1. 1. 上海大学材料基因组工程研究院,上海 200444 2. 中国科学技术大学精准智能化学全国重点实验室,安徽 合肥 230026
  • 收稿日期:2025-03-05 修回日期:2025-04-27 出版日期:2025-11-28 发布日期:2025-11-27
  • 通讯作者: 王元庆 yuanqingwang@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目;上海市自然科学基金资助项目

Recent advances in transition metal based catalysts for seawater electrolysis

Qian YAN1#,  Bingxu CHEN1#,  Zhonghui HU1#,  Sida LI1,  Jia YU1,2*,  Yuanqing WANG1*   

  1. 1. Materials Genome Institute, Shanghai University, Shanghai 200444, China 2. State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
  • Received:2025-03-05 Revised:2025-04-27 Online:2025-11-28 Published:2025-11-27
  • Contact: 元庆 王 yuanqingwang@shu.edu.cn

摘要: 在可持续能源技术研究中,电解水制氢被认为是电化学能源转化的关键技术之一,其技术突破对实现“双碳”目标具有重要意义。电解水过程包括两个半反应:析氢反应(HER)与析氧反应(OER)。相比于HER,OER涉及四电子转移过程(4OH-→O2+2H2O+4e-),具有较高的反应能垒,其缓慢的动力学导致了电解水的整体效率降低,因此成为研究的重点。近年来,研究人员逐渐将目光转移至海水电解的技术开发,因为相较于有限的淡水资源,海水储量丰富,约占地球总水量的96.5%,这使得海水电解在未来具有广阔的应用前景。然而,直接海水电解面临着多重技术挑战:高浓度氯离子导致的氯离子氧化竞争反应不仅会降低海水电解的效率,还会导致电极和催化剂的腐蚀;电极表面产生的气泡会覆盖活性位点并增加界面阻抗;海水中的Mg2+, Ca2+等离子会在电极表面形成沉淀,堵塞活性位点。这些问题会导致催化剂在海水电解中的活性、选择性和稳定性受限。本文综述了海水电解阳极催化剂所面临的关键挑战,并重点总结了近年来针对过渡金属基催化剂的多种设计策略,包括组分调控、几何结构优化、选择性透过层设计、复合材料设计等。最后,探讨了未来实现高活性、高选择性及优异稳定性的过渡金属基催化剂的发展方向,应该将理论计算与实验相结合,借助原位表征技术与人工智能技术,深入探究过渡金属基催化剂中活性位点的演化机制,为设计更高效的催化剂提供理论依据。

关键词: 海水电解, 析氧反应, 过渡金属基催化剂, 设计策略

Abstract: In the field of sustainable energy technology, water electrolysis for hydrogen production plays a crucial role in electrochemical energy conversion, with its technological advancements holding significant importance for achieving the carbon peaking and carbon neutrality goals. The water electrolysis process comprises two half-reactions: the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. Compared to HER, OER involves a four-electron transfer process (4OH-→O2+2H2O+4e-), characterized by a higher reaction energy barrier. Its sluggish kinetic substantially reduces the overall efficiency of water electrolysis, making OER the primary research focus. Given the scarcity of freshwater resources, seawater, an abundant alternative, offers promising prospects for large-scale hydrogen production. However, direct seawater electrolysis faces multiple technical challenges: (1) high chloride ion concentrations trigger competing chloride oxidation reactions (ClOR), which not only reduce current efficiency but also corrode electrodes and catalysts; (2) gas bubbles generated on electrode surfaces cover active sites and increase interfacial impedance; (3) precipitation of Mg2+ and Ca2+ ions from seawater blocks active sites and degrades catalytic performance. These issues collectively constrain the activity, selectivity, and stability of catalysts in seawater electrolysis systems. This review explores the key challenges of anode catalysts for seawater electrolysis and highlights various catalyst design strategies, such as composition modulation, geometric structure optimization, selective permeation layer design and composite material engineering, with a focus on transition metal oxide catalysts explored in recent years. Future research directions emphasize the integration of theoretical calculations with experimental validation, combined with in-situ characterization and artificial intelligence techniques to identify active sites. Such fundamental insights will provide a robust theoretical foundation for designing high-performance catalysts with superior activity, selectivity, and long-term stability under practical seawater electrolysis conditions.

Key words: seawater electrolysis, oxygen evolution reaction, transition metal-based catalyst, design strategies