欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (12): 1300-1307.DOI: 10.12034/j.issn.1009-606X.225115

• 研究论文 • 上一篇    下一篇

基于阳极氧化法的钛酸锂纳米管的制备

杨文, 吴超男, 谢娟, 田勇攀*, 何世伟, 赵卓   

  1. 安徽工业大学冶金工程学院,安徽 马鞍山 243032
  • 收稿日期:2025-04-20 修回日期:2025-07-16 出版日期:2025-12-28 发布日期:2025-12-29
  • 通讯作者: 田勇攀 tianyongpan_ahut@163.com
  • 基金资助:
    国家自然科学基金

Synthesis of lithium titanate nanotubes via anodic oxidation

Wen YANG,  Chaonan WU,  Juan XIE,  Yongpan TIAN*,  Shiwei HE,  Zhuo ZHAO   

  1. School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
  • Received:2025-04-20 Revised:2025-07-16 Online:2025-12-28 Published:2025-12-29

摘要: 锂作为锂离子电池的关键材料,在新能源领域的需求急剧攀升。钛酸锂基锂离子筛因具备优异的锂选择吸附性能,在含锂复杂溶液体系的锂资源高效分离领域展现出广阔应用前景。本研究将阳极氧化与锂化退火工艺相结合,成功制备出表面开孔良好、与基底结合牢固的钛酸锂纳米管。实验以钛丝为基体、乙二醇为电解液,通过调控阳极氧化电压、氟离子浓度及氧化时间,先构筑TiO2纳米管阵列,再经锂化退火与酸处理获得锂离子筛。研究结果表明,当阳极氧化电压为40 V、NH4F质量分数为0.5wt%、阳极氧化时间为3 h,且额外施加10 V降电势处理5 min时,可制得形貌规整、与基底结合紧密的TiO2纳米管阵列;经锂化退火处理后,钛酸锂仍保留纳米管形貌,且酸洗处理后其平均孔径由50 nm增至65 nm。本研究通过阳极氧化-锂化协同策略成功构建了钛酸锂纳米管阵列,这一成果为新一代高性能钛酸盐提锂材料的研发提供了参考。

关键词: TiO2纳米管, 阳极氧化, 钛酸锂纳米管

Abstract: As a critical component in lithium-ion battery technology, lithium has witnessed exponentially growing demand in renewable energy systems, driven by global decarbonization initiatives. Notably, lithium titanate, serving as an advanced lithium-ion sieve, demonstrates exceptional potential for selective lithium extraction from multicomponent brine systems containing competing cations such as Na+ and Mg2+, particularly due to its superior structural stability compared to manganese-based counterparts. In this study, hierarchically structured lithium titanate nanotube arrays with tunable surface porosity and enhanced interfacial adhesion were engineered via a multi-step synthesis protocol integrating anodic oxidation with lithiation annealing. Using titanium wire as the raw material and ethylene glycol as the electrolyte, TiO2 nanotube arrays were fabricated by controlling anodic oxidation voltage, fluoride ion concentration, and oxidation time. The lithium ion sieve was subsequently obtained through lithiation annealing and acid treatment. Experimental results demonstrated that nanotube arrays with uniform morphology and strong interfacial adhesion were obtained under optimized conditions: anodization voltage of 40 V, NH4F mass fraction of 0.5wt%, oxidation duration of 3 h, and a subsequent 5-minute 10 V potential reduction treatment. Following lithiation annealing, lithium titanate nanotubes were successfully synthesized. Acid etching increased the average pore size from 50 nm to 65 nm, while SEM and XPS analyses confirmed the retention of TiO2 nanotube morphology in the ion sieve and the successful fabrication of titanate nanotube arrays. This anodization-lithiation synergistic strategy enabled the construction of titanate-based nanotube arrays, offering valuable insights for developing next-generation high-efficiency lithium extraction materials.

Key words: TiO2 nanotubes, anodic oxidation, lithium titanate nanotubes