[1] Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination. 2010, 3(264): 268-288.
[2] Khan M I, Zheng C, Mondal A N, et al. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis[J]. Desalination. 2017, 402: 10-18.
[3] 张学敏,王三反,周键. 改性离子交换膜抗污染性能研究进展[J]. 工业水处理. 2016,08: 16-19.
Zhang X M, Wang S F, Zhou J. Research progress in the antipollution property of modified ion-exchange membranes[J]. Industrial water treatment. 2016,08: 16-19.
[4] 刘璐,赵志娟,李雅,等. 工业废水电渗析过程中膜污染研究进展[J]. 过程工程学报. 2015,05: 881-891.
Liu L, Zhao Z J, Li Y, et al. Research Progress in Fouling of Ion Exchange Membrane for Electrodialysis Desalination of Industrial Wastewater[J]. The Chinese Journal of Process Engineering. 2015,05: 881-891.
[5] Tanaka N, Nagase M, Higa M. Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties[J]. Journal of Membrane Science. 2011, 384(1-2): 27-36.
[6] Xu T. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science. 2005, 263(1-2): 1-29.
[7] 潘杰峰,谭瑞卿,丁金成,等. 电渗析用阴离子交换膜抗有机污染的调控[J]. 膜科学与技术. 2017,06: 114-120.
Pan J F, Tan R Q, Ding J C, et al. Progress on design and preparation of anti-organic fouling anion exchange membranes for electrodialysis[J]. Membrane Science and Technology. 2017,06: 114-120.
[8] Park J, Choi J, Yeon K, et al. An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy[J]. Journal of Colloid and Interface Science. 2006, 294(1): 129-138.
[9] Hong-Joolee, Jae-Hwanchoi, Jaeweoncho, et al. Characterization of anion exchange membranes fouled with humate during electrodialysis[J]. Journal of Membrane Science. 2002,203: 115-126.
[10] Park J S, Chilcott T C, Coster H G L, et al. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data[J]. Journal of Membrane Science. 2005, 246(2): 137-144.
[11] Lee H, Hong M. Fouling of an anion exchange membrane in the electrodialysis desalination process in the presence of organic foulants[J]. Desalination. 2009,238: 60-69.
[12] Bukhovets A, Eliseeva T, Oren Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution[J]. Journal of Membrane Science. 2010, 364(1-2): 339-343.
[13] Lindstrand V, Sundstr M G R, J Nsson A, et al. Fouling of electrodialysis membranes by organic substances[J]. Desalination. 2000, 128(1): 91-102.
[14] Tanaka N, Nagase M, Higa M. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances[J]. Desalination. 2012, 296: 81-86.
[15] Zhao Z, Shi S, Cao H, et al. Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis[J]. Desalination. 2018, 428: 199-206.
[16] 郭海成,于水利. 电渗析中离子交换膜有机污染的研究进展[C]. 中国山东威海: 20155.
Guo H C,Yu S L. Research progress of organic fouling of ion exchange membranes during electrodialysis[C]. Weihai, Shandong, China: 20155.
[17] 徐铜文. 膜化学与技术教程[M]. 合肥:中国科学技术大学出版社,2003.
[18] 杨皓程. 基于聚多巴胺/聚乙烯亚胺共沉积技术的聚合物膜表界面工程[D]. 杭州:浙江大学, 2017:7-8.
Yang H C. Surface and interface engineering of poiymer Membranes via polydopamine/ polyethylene- imine co-deposition [D]. Hangzhou:Zhejiang University, 2017:7-8.
[19] 周蓉. 基于聚多巴胺沉积的聚丙烯微孔膜抗污染表面研究[D]. 杭州:浙江大学, 2014: 8-9.
Zhou R. Antifouling surfface for microporous polypropylene membrane based on polydomine deposition[D]. Hangzhou:Zhejiang University, 2014:8-9.
[20] Fernandez-Gonzalez C, Zhang B, Dominguez-Ramos A, et al. Enhancing fouling resistance of polyethylene anion exchange membranes using carbon nanotubes and iron oxide nanoparticles[J]. Desalination. 2017, 411: 19-27.
[21] Vaselbehagh M, Karkhanechi H, Mulyati S, et al. Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process[J]. Desalination. 2014, 332(1): 126-133.
[22] Mulyati S, Takagi R, Fujii A, et al. Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process[J]. Journal of Membrane Science. 2012, 417-418: 137-143.
[23] 葛道才. 耐有机污染阴离子交换膜的制备方法[J]. 海水淡化. 1978,02: 67-71.
[24] Wang M, Wang X, Jia Y, et al. An attempt for improving electrodialytic transport properties of a heterogeneous anion exchange membrane[J]. Desalination. 2014, 351: 163-170.
[25]赵化侨. 等离子体化学与工艺[M]. 合肥:中国科学技术大学出版社,1993: 300-301.
Zhao H Q. Plasma chemistry and processing[M]. Hefei: University?of?Science?and?Technology?of?China?Press, 1993: 300-301.
[26]张松峰, 吴力立. 聚偏氟乙烯膜亲水改性研究进展[J]. 化工进展, 2016, 35(8): 2480-2487.
Zhang S F, Wu L L. Research progress of hydrophilic modification of polyvinylidene fluoride membranes[J]. Chemical Industry and Engineering Progress. 2016, 35(8): 2480-2487.
[27] Zhao Z, Shi S, Cao H, et al. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane[J]. Desalination & Water Treatment. 2017, 89: 77-86.
[28] 刘小冲,易佳婷,王琛. Ar等离子体改性PTFE膜接枝丙烯酸研究[J]. 化工技术与开发. 2006, 04: 13-18.
Liu X C, Yi J T, Wang C. Ar Plasma-induced graft polymerization of acrylic acid onto PTFE films [J]. Technology Development of Chemical Industry. 2006,04: 13-18.
[29] Kim E, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling[J]. Applied Surface Science. 2011, 257(23): 9863-9871.
[30] Kaur S, Ma Z, Gopal R, et al. Plasma-Induced Graft Copolymerization of Poly(methacrylic acid) on Electrospun Poly(vinylidene fluoride) Nanofiber Membrane[J]. Langmuir. 2007, 23(26): 13085-13092.
[31] Güler E, van Baak W, Saakes M, et al. Monovalent-ion-selective membranes for reverse electrodialysis[J]. Journal of Membrane Science. 2014, 455: 254-270.
[32] Liu H, Jiang Y, Ding J, et al. Surface layer modification of AEMs by infiltration and photo-cross-linking to induce monovalent selectivity[J]. Aiche Journal. 2018, 64(3): 993.
[33] Wang T, Lu J, Mao L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science. 2016, 515: 125-133.
[34] Zhao Z, Cao H, Shi S, et al. Characterization of anion exchange membrane modified by electrodeposition of polyelectrolyte containing different functional groups[J]. Desalination. 2016, 386: 58-66.
[35] Mulyati S, Takagi R, Fujii A, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition[J]. Journal of Membrane Science. 2013, 431: 113-120.
[36] Zhao Z, Shi S, Cao H, et al. Layer-by-layer assembly of anion exchange membrane by electrodeposition of polyelectrolytes for improved antifouling performance[J]. Journal of Membrane Science. 2018, 558: 1-8.
[37] Zhao Y, Zhu J, Ding J, et al. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity[J]. Journal of Membrane Science. 2018, 548: 81-90.
[38] 马六甲,陈英波,孟建强,等. 氧化石墨烯改性分离膜的研究及应用[J]. 纺织导报. 2016, S1: 56-62.
Ma L J, Chen Y B, Meng J Q, et al. Graphene Oxide-modified Separation Membranes: Research and Application[J]. China Textile Leader. 2016, S1: 56-62.
[39] 袁方竹,赵文. 氧化石墨烯在净水分离膜改性中的研究进展[J]. 化工管理. 2017, 13: 74.
[40] Li Y, Shi S, Cao H, et al. Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)[J]. Applied Surface Science. 2018, 442: 700-710.
[41] Zhao Y, Xu Z, Shan M, et al. Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes[J]. Separation and Purification Technology. 2013, 103: 78-83.
[42] Wang T, Lu J, Mao L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science. 2016, 515: 125-133.
[43] Hegab H M, Wimalasiri Y, Ginic-Markovic M, et al. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan[J]. Desalination. 2015, 365: 99-107.
[44] 徐又一,蒋金泓,朱利平,等. 多巴胺的自聚-附着行为与膜表面功能化[J]. 膜科学与技术. 2011, 03: 32-38.
Xu Y Y, Jiang J H, Zhu L P, et al. Self-polymerization-adhesion behavior of dopamine and surface functionalization of membranes[J]. Membrane Science and Technology. 2011, 03: 32-38.
[45] 赵晨旭,谢银红,廖芝建,等. 聚多巴胺对材料表面功能化的研究及应用进展[J]. 高分子通报. 2015, 12: 28-37.
Zhao C X, Xie Y H, Liao Z J, et al. The Research and Application Progress of Polydopamine on the Material Surface Functionalization[J]. Chinese Polymer Bulletin. 2015, 12: 28-37.
[46] Vaselbehagh M, Karkhanechi H, Takagi R, et al. Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis[J]. Journal of Membrane Science. 2016, 515: 98-108.
[47] Vaselbehagh M, Karkhanechi H, Takagi R, et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis – experimental verification of theoretical predictions[J]. Journal of Membrane Science. 2015, 490: 301-310.
[48] Ruan H, Zheng Z, Pan J, et al. Mussel-inspired sulfonated polydopamine coating on anion exchange membrane for improving permselectivity and anti-fouling property[J]. Journal of Membrane Science. 2018, 550: 427-435.
[49] Zhao Z, Shi S, Cao H, et al. Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis[J]. Desalination. 2018, 428: 199-206.
[50] Higa M, Tanaka N, Nagase M, et al. Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups[J]. Polymer. 2014, 55(16): 3951-3960.
[51]许云杰, 吴俊杰. 膜的改性及其在环境领域应用研究进展[J]. 四川环境, 2009, 28(4): 108-112.
Xu Y J,Wu J J. Review of Membrane Modification and Applications in Environmental Field[J]. Sichuan Environment. 2009, 28(4): 108-112.
|