欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (10): 1349-1359.DOI: 10.12034/j.issn.1009-606X.222246

• 综述 • 上一篇    下一篇

化工技术在生物冶金过程强化中的研究进展

沈蔡龙1,2, 贾炎3, 陈彦臻1,2, 张广积1,2*, 杨超1,2
  

  1. 1. 中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,北京 100190 2. 中国科学院大学化学工程学院,北京 100049 3. 中国科学院过程工程研究所,战略金属资源绿色循环利用国家工程研究中心,北京 100190
  • 收稿日期:2022-07-11 修回日期:2022-09-03 出版日期:2022-10-28 发布日期:2022-10-26
  • 通讯作者: 张广积 gjzhang@ipe.ac.cn
  • 作者简介:沈蔡龙(1997-),男,江苏省启东市人,博士研究生,材料与化工专业,E-mail: shencailong18@mails.ucas.ac.cn;通讯联系人,张广积, E-mail: gjzhang@ipe.ac.cn
  • 基金资助:
    国家重点研发计划

Research progress of chemical engineering technology in the process intensification of biohydrometallurgy

Cailong SHEN1,2,  Yan JIA3,  Yanzhen CHEN1,2,  Guangji ZHANG1,2*,  Chao YANG1,2   

  1. 1. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3. National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-07-11 Revised:2022-09-03 Online:2022-10-28 Published:2022-10-26

摘要: 随着高品位矿物的消耗枯竭,生产成本高、环境污染严重的传统火法冶炼技术已不能适应我国经济社会可持续发展的需要。以生物堆浸和生物槽浸为代表的生物冶金技术具有操作简单、成本低廉、环境友好等特点,可用于低品位、复杂矿物的处理,目前已广泛应用于铜、金等有价金属的回收利用。但是,生物冶金过程中相对较慢的反应速度是限制其应用范围进一步扩大的主要原因。生物冶金技术的基本过程与化工过程紧密相关,化工技术的发展在历史上曾极大地促进生物冶金技术的推广应用,通过化工技术强化生物冶金过程仍是未来生物冶金研究的主要方向之一。因此,本工作综述了近年来与生物冶金有关的化工过程研究进展,主要从工业应用角度分析了生物堆浸和生物槽浸过程的影响因素,以期帮助研究者更好地了解相关领域的发展现状,正确把握研究方向。

关键词: 生物浸出, 生物预氧化, 过程强化, 难处理金矿, 硫化铜矿

Abstract: With the depletion of high-grade minerals, traditional pyrometallurgy with high cost and serious environmental contamination is no longer suitable for the sustainable development of the economy and society of China. Biohydrometallurgy is a bacterial-assisted leaching process to solubilize or expose the metals contained in different minerals, and the main role of the bacteria is to regenerate ferric ions and protons. Since the 1980s, biohydrometallurgy including heap bioleaching and tank bioleaching has been widely used for the recovery of metals such as copper and gold from low-grade and complex minerals because of its easy operation, low cost, and environmental advantages. Up to now, about 15% of the world's copper production can be attributed to the heap bioleaching of copper ore and about 5% of the world's gold production can be attributed to the biooxidation of refractory gold ore in continuous stirred tank reactors. However, the relatively slow reaction velocity of biohydrometallurgy is the main limitation to its further development. The application of biohydrometallurgy has been promoted remarkedly by the development of chemical engineering technology in history such as chemical reaction engineering and chemical separation technology. The process intensification of biohydrometallurgy based on chemical engineering technology is still one of the most important research interests in the future. Therefore, the research progress of chemical engineering technology in the process intensification of biohydrometallurgy was reviewed in this paper to help a better understanding. The influencing factors of efficiency in heap bioleaching and tank bioleaching were discussed mainly from an industrial point of view, and future research prospects were also put forward.

Key words: bioleaching, biooxidation, process intensification, refractory gold ore, copper sulfide ore