欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (2): 226-234.DOI: 10.12034/j.issn.1009-606X.222080

• 研究论文 • 上一篇    下一篇

基于连续方法的气固循环流化床全回路模拟及稳定性分析

贾博宇1,2, 刘新华2, 王各2,3, 孙怀宇1, 鲁波娜2,4*   

  1. 1. 沈阳化工大学化学工程学院,辽宁 沈阳 110142 2. 中国科学院过程工程研究所,北京 100190 3. 中国石化润滑油有限公司,北京 100085 4. 中国科学院大学化工学院,北京 100049
  • 收稿日期:2022-03-15 修回日期:2022-04-30 出版日期:2023-02-28 发布日期:2023-03-01
  • 通讯作者: 鲁波娜 bnlu@ipe.ac.cn
  • 作者简介:贾博宇,硕士研究生,化学工程专业,E-mail: 18811321097@163.com;通讯联系人,鲁波娜,研究员,化学工程专业, E-mail: bnlu@ipe.ac.cn
  • 基金资助:
    国家自然科学基金

Full-loop simulation and stability analysis of a gas-solid circulating fluidized bed

Boyu JIA1,2,  Xinhua LIU2,  Ge WANG2,3,  Huaiyu SUN1,  Bona LU2,4*   

  1. 1. School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China 2. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. Sinopec Lubricant Company, Beijing 100085, China 4. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-03-15 Revised:2022-04-30 Online:2023-02-28 Published:2023-03-01
  • Supported by:
    National Natural Science Foundation of China

摘要: 相比对单个操作单元的模拟,气固循环流化床的全回路模拟能全面揭示各单元之间的联系、诊断操作突变等现象,对实际工业生产更具指导意义。本研究在连续介质模型结合颗粒动理论的框架下,对一套虚拟过程工程(VPE)的气固循环流化床装置进行了全回路模拟和稳定性分析。模拟发现了提升管中的颗粒浓度及压降发生大幅度的周期性震荡现象,两种完全不同的操作状态,即稀相输送和浓相输送,交替式地出现。为分析该现象产生的原因,考察了模型因素(主要是气固相间曳力)和操作因素(颗粒藏料量和提升管表观气速)对周期性震荡现象的影响。研究发现,将考虑非均匀结构影响的曳力替换成均匀曳力,仍不能消除周期震荡现象,其颗粒输送返回装置(Loop-seal)压头不足以保证颗粒从下降管平稳输送到提升管,而降低气速和增大藏料量都有利于颗粒循环输送的稳定性,防止“窜气”现象的发生。结合上述现象,进一步聚焦影响颗粒输送的关键点,即Loop-seal气动阀,采用引入虚拟阀门的方式提高Loop-seal输送管中的输送阻力,从而有效改进了全回路模拟的稳定性,其预测得到的提升管轴向压降分布与实验值基本吻合。

关键词: 全回路模拟, 密相输送, 循环流化床, 多尺度结构, 颗粒应力

Abstract: The gas-solid fluidized bed has wide application in industry such as refinery, metallurgy, and ore calcination. In the practical operation, it is usually combined with other units like conveying pipe, cyclone, downer and valves to run in a full-loop way. Compared to simulation of a single operating unit, the full-loop simulation of the gas-solid circulating fluidized bed system can reveal interactions between different operating components and diagnose the sudden change of operation, thus being of greater importance in industrial operation. In this study, the full-loop simulation and stability analysis of a gas-solid circulating fluidized bed of virtual process engineering (VPE) are carried out under the framework of two fluid model and kinetic theory of granular flow. The simulation shows that there exists periodic fluctuation of solids volume fraction and pressure drop in the riser where two distinct fluidization states, i.e., dilute fluidization and dense fluidization, appear alternatively, because of the occurrence of gas bypassing. To figure out the underlying cause, the influence of model factors (mainly refer to gas-solid drag) and operating parameters (i.e., solid inventory and superficial velocity) on the periodic fluctuation phenomenon is numerically investigated. It is found that changing the drag model cannot eliminate the fluctuation, while reducing the gas velocity and increasing the solid inventory are conducive to the stability of particle circulating transportation and avoiding the occurrence of "gas bypassing" because of the increase in pressure drop of the Loop-seal. On this basis, the Loop-seal valve which is reported to be closely related to particle conveying is focused on. The simulation with adding a virtual valve in the middle of the inclined pipe is performed and shows that the resistance of particle conveying increases thus ensuring the enough pressure drop of the Loop-seal to operate the full-loop system steadily. The time-averaged axial profile of pressure drop predicted by the simulation agrees with the experimental data. This method is found to be helpful to improve the stability of the full-loop simulation.

Key words: full-loop simulation, dense flow transport, circulating fluidized bed, multi-scale structure, particle transporting resistance