欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (6): 565-578.DOI: 10.12034/j.issn.1009-606X.224325

• 研究论文 • 上一篇    下一篇

炉膛和环境温度对氢基竖炉内温度-应力场的影响

黄正超1, 金焱1*, 秦建涛2, 蔡国庆2, 凌宏志1, 刘子钰1, 林鹏1   

  1. 1. 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北 武汉 430081 2. 山东耐材集团鲁耐窑业有限公司,山东 淄博 255000
  • 收稿日期:2024-10-18 修回日期:2025-02-27 出版日期:2025-06-28 发布日期:2025-07-01
  • 通讯作者: 金焱 jinyan@wust.edu.cn
  • 基金资助:
    中国宝武低碳冶金创新基金资助项目;国家自然科学基金

Influence of furnace and ambient temperature on temperature stress field inside a hydrogen based shaft furnace

Zhengchao HUANG1,  Yan JIN1*,  Jiantao QIN2,  Guoqing CAI2,  Hongzhi LING1, Ziyu LIU1,  Peng LIN1   

  1. 1. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China 2. Lunai Kiln Refractories Co. Ltd. of Shandong Refractories Group, Zibo, Shandong 255000, China
  • Received:2024-10-18 Revised:2025-02-27 Online:2025-06-28 Published:2025-07-01

摘要: 氢基竖炉作为氢冶金技术设备具有巨大减排潜力,针对氢基竖炉固体域的温度场分布及热应力产生的问题,本研究以某钢厂氢基竖炉为研究对象,根据稳态热、静态结构理论建立热-力耦合模型,模拟了不同炉膛及环境温度条件下,氢基竖炉内部的热量传递及热应力产生过程,考察了内、外温度对于竖炉内部温度及热应力的影响。结果表明,炉壳及耐火材料1的最大应力分别能达到6150和881 MPa,且内、外部温度对于竖炉内部热环境稳定及炉身结构稳定都具有重要影响,其中炉膛温度提升会显著提高耐火材料间的温度梯度,并增大其热应力峰值,炉膛温度为800~900℃时,最大应力增幅达93 MPa,形变量增幅达3.34 mm;外部温度的提升能减小内外温度梯度,从而降低内部耐火材料的热应力和形变量,并减小炉壳内侧应力。本研究采取特定部位建立路径的方法直观地展示了不同温度条件下的温度场、应力场分布,为优化氢基竖炉的炉身材料堆砌方式和结构设计提供了参考。

关键词: 氢冶金, 氢基竖炉, 热-力耦合, 热应力, 数值模拟

Abstract: As a hydrogen metallurgy technology, hydrogen based shaft furnaces have great potential for emission reduction. In response to the temperature field distribution and thermal stress generation in the solid domain of hydrogen based shaft furnaces, this study takes a hydrogen based shaft furnace in a steel plant as the research object. Based on the steady-state thermal and static structure theory, a thermal stress coupling model is established to simulate the heat transfer and thermal stress generation process inside the hydrogen based shaft furnace under different furnace and external temperature conditions. Based on this, the influence of internal and external temperatures on the temperature and thermal stress inside the shaft furnace is studied. The results show that the maximum stress of the furnace shell and refractory material 1 can reach 6150 and 881 MPa respectively, and the internal and external temperatures have a significant impact on the stability of the internal thermal environment and furnace structure of the shaft furnace. The increase in furnace temperature significantly increases the temperature gradient between refractory materials and increases their peak thermal stress. When the furnace temperature is between 800~900℃, the maximum stress increase reaches 93 MPa, and the deformation increase reaches 3.34 mm. The increase in external temperature can reduce the temperature gradient inside and outside, thereby reducing the thermal stress and deformation of internal refractory materials, and reducing the magnitude of stress inside the furnace shell. This study adopts the method of establishing paths at specific locations to visually display the temperature and stress field distributions under different temperature conditions, providing reference for optimizing the stacking method of furnace body materials and structure design of hydrogen based shaft furnaces.

Key words: hydrogen metallurgy, hydrogen based shaft furnace, thermal mechanical coupling, thermal stress, numerical simulation