欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (11): 1143-1155.DOI: 10.12034/j.issn.1009-606X.225023

• 研究论文 • 上一篇    下一篇

高炉冲渣水余热驱动的双吸收式热泵系统优化设计与耦合研究

黄志甲*, 胡耀, 孙凤, 张样, 鲁月红, 王俊   

  1. 安徽工业大学建筑工程学院,安徽 马鞍山 243032
  • 收稿日期:2025-01-15 修回日期:2025-05-04 出版日期:2025-11-28 发布日期:2025-11-27
  • 通讯作者: 黄志甲 jzjnyjs@163.com
  • 基金资助:
    国家级大学生创新创业训练计划项目;安徽省高校自然科学基金重大项目

Optimization design and coupling study of a double absorption heat transformer system driven by waste heat from blast furnace slag flushing water

Zhijia HUANG*,  Yao HU,  Feng SUN,  Yang ZHANG,  Yuehong LU,  Jun WANG   

  1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
  • Received:2025-01-15 Revised:2025-05-04 Online:2025-11-28 Published:2025-11-27

摘要: 为降低高炉煤气碳捕集系统的再生能耗,同时合理利用冲渣水余热,本工作建立了双吸收式热泵热力学模型,研究了蒸发温度、冷凝温度、吸收蒸发温度、吸收温度对系统性能的影响。利用遗传算法进行模型优化计算,并与高炉煤气碳捕集系统进行耦合研究,分析了冲渣水温度波动对耦合系统的影响。研究结果表明,当蒸发温度为75℃时,系统COP最大值为0.3168;冷凝温度为20℃时,系统COP最大值为0.3032;吸收蒸发温度为103℃时,系统COP最大值为0.3116;吸收温度为130℃时,系统COP最大值为0.3015;优化后系统换热面积减少14.8%,面积性能比提高了16.5%。冲渣水温度从75℃升高至85℃时,热泵制热量提升18.6%,碳捕集能耗降低约10.3%;系统投资回收期为3.48年。此研究拓宽了双吸收式热泵在冶金行业的应用领域,也为双吸收式热泵优化设计提供了方法,对于推动冶金行业的节能减排和可持续发展具有重要意义。

关键词: 双吸收式热泵, 模型, 优化设计, 二氧化碳捕集, 高炉冲渣水余热

Abstract: To reduce the regeneration energy consumption of the blast furnace gas carbon capture system while rationally utilizing the waste heat of slag flushing water. This work establishes a thermodynamic model of a double absorption heat transformer. The effects of evaporation temperature, condensation temperature, absorption-evaporation temperature, and absorption temperature on system performance are investigated and analyzed. The genetic algorithm is employed for model optimization calculations, and conduct a coupling study with the blast furnace gas carbon capture system, and analyze the influence of the temperature fluctuation of the slag flushing water on the coupled system. The research results indicate that the maximum COP of the system is 0.3168 when the evaporation temperature is 75℃, 0.3032 when the condensation temperature is 20℃, 0.3116 when the absorption-evaporation temperature is 103℃, and 0.3015 when the absorption temperature is 130℃. After optimization, the heat exchange area of the system is reduced by 14.8%, and the area-to-performance ratio is improved by 16.5%. When the temperature of the slag flushing water rises from 75℃ to 85℃, the heat output of the heat pump increases by 18.6%, and the energy consumption of carbon capture decreases by approximately 10.3%. The investment payback period of the system is 3.48 years. This research broadens the application scope of double absorption heat transformer in the metallurgical industry and provides a method for the optimal design of double absorption heat transformer. It is of great significance for promoting energy conservation, emission reduction, and sustainable development in the metallurgical industry.

Key words: double absorption heat transformer, model, optimization design, CO2 capture, waste heat from blast furnace slag flushing water