欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2025, Vol. 25 ›› Issue (11): 1130-1142.DOI: 10.12034/j.issn.1009-606X.225052

• 研究论文 • 上一篇    下一篇

变径快速流化床内气固流动特性的双流体模拟研究

巩向阳1,2, 杨雷2,3*, 首时4, 赵翔宇4, 龚剑洪4, 杨超1,2   

  1. 1. 中国科学院过程工程研究所,北京 100190 2. 中国科学院大学化学工程学院,北京 100049 3. 中国科学院过程工程研究所,生物药制备与递送重点实验室,生化工程国家重点实验室,北京 100190 4. 中石化石油化工科学研究院有限公司,北京 100083
  • 收稿日期:2025-02-20 修回日期:2025-04-23 出版日期:2025-11-28 发布日期:2025-11-27
  • 通讯作者: 杨雷 yanglei@ipe.ac.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目;中国科学院引才计划项目;中国科学院A类战略性先导科技专项

Two-fluid model simulation study of gas-solid flow characteristics in a diameter-transformed fast fluidized bed

Xiangyang GONG1,2,  Lei YANG2,3*,  Shi SHOU4,  Xiangyu ZHAO4,  Jianhong GONG4,  Chao YANG1,2   

  1. 1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3. State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 4. SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
  • Received:2025-02-20 Revised:2025-04-23 Online:2025-11-28 Published:2025-11-27

摘要: 催化裂解反应器是重油深度利用生产轻质烯烃的重要工具,而反应器内部气固两相流动和混合特性对反应效果具有重要影响。为了获得变径快速流化床催化裂解反应器中复杂的相间、相内相互作用及流动行为,采用双流体模拟方法对流化床内气固流动行为进行模拟,以探究其内部气固流动特性。通过与现有实验数据进行对比,验证了模拟方法的可行性/准确性。并进一步研究了喷嘴气体流量和床层结构参数对颗粒流动的影响。结果表明,增加气体流量在一定程度上可以缓解颗粒在突扩段的聚集,使颗粒在反应器内分布更加均匀。而气体流量对上部区域的颗粒浓度分布影响不大。反应器结构参数优化的结果显示,流化床整体结构中渐扩段上部直径和底部直径呈现一定倾角更有利于颗粒在反应器内的均匀分布,使气固混合得到改善,有利于催化裂化过程的进行。

关键词: 变径快速流化床, 数值模拟, 双流体模型, 流动特性, 结构优化

Abstract: Catalytic cracking reactors serve as crucial facilities for enhancing heavy oil utilization through light olefin production, where gas-solid hydrodynamics significantly influence reaction efficiency. This study investigated complex inter-phase and intra-phase interactions and flow behaviors in a diameter-transformed fast fluidized bed catalytic cracking reactor using a two-fluid model approach. The numerical model was validated against experimental measurements, confirming its accuracy in capturing gas-solid flow characteristics. Systematic analyses were conducted to examine the effects of nozzle gas velocity and structural parameters on particle dynamics. Results demonstrate that the increased gas velocity effectively mitigates particle accumulation in the sudden expansion zone, promoting more uniform solid distribution within the reactor. However, gas velocity variations showed negligible impact on particle concentration profiles in upper regions. Structural optimization revealed that implementing a conical transition with specific inclination angles between the upper and lower sections of the gradual expansion zone enhanced particle distribution uniformity and gas-solid mixing efficiency. These improvements were particularly conducive to optimizing catalytic cracking processes. These findings provided theoretical guidance for reactor design aiming at enhancing fluidization quality and process performance.

Key words: diameter-transformed fast fluidized bed, numerical simulation, two-fluid model, flow characteristics, structural optimization