Chin. J. Process Eng. ›› 2018, Vol. 18 ›› Issue (1): 11-19.DOI: 10.12034/j.issn.1009-606X.217183
• Reviews • Previous Articles Next Articles
Jialei LI1, Kaiwei SONG1, Dianwen LIU1*, Xiaolin ZHANG1, Jianmin LI1, Shunfu AO2
Received:
2017-03-22
Revised:
2017-05-20
Online:
2018-02-22
Published:
2018-01-29
Contact:
Dianwen DianLIU ldwkust@126.com
Supported by:
李佳磊1,宋凯伟1,刘殿文2,章晓林1,李健民3,敖顺福1
通讯作者:
刘殿文 ldwkust@126.com
基金资助:
Jialei LI Kaiwei SONG Dianwen LIU Xiaolin ZHANG Jianmin LI Shunfu AO. Research Progress on Activation and Deactivation of Sphalerite Flotation[J]. Chin. J. Process Eng., 2018, 18(1): 11-19.
李佳磊 宋凯伟 刘殿文 章晓林 李健民 敖顺福. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018, 18(1): 11-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217183
[1]Li J, Song K, Liu D, et al. Hydrolyzation and adsorption behaviors of SPH and SCT used as combined depressants in the selective flotation of galena from sphalerite[J]. Journal of Molecular Liquids, 2017. [2]毕克俊, 方建军, 张琳,等.云南某低品位铅锌硫化矿选矿工艺[J].过程工程学报,2016,16(1):99-104. Bi K J, Fang J J, Zhang L, et, al. Beneficiation of a Low Lead-Zinc Sulfide Ore in Yunnan[J]The Chinese journal of process Engineering, 2016,16(1):99-104. [3]阳富强, 吴超. 硫化矿自燃预测预报理论与技术[M]. 冶金工业出版社, 2011. Yang F Q, Wu C. Liu hua kuan zi ran yu bao li lun Yu Ji Shu[M] Metallurgical Industry Press,2011 [4]何发钰, 孙传尧, 宋磊, 等.磨矿环境对方铅矿和闪锌矿矿浆化学性质的影响[J].金属矿山,2006(8):30-33. He F Y, Sun C Y, Song Lei, et. Study on Effect of Grinding Environment on Pulp Chemistry of Galena and Sphalerite[J]Metal Mine, 2006(8):30-33. [5]Williamson M A, Rimstidt J D.The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J].Geochimica Et Cosmochimica Acta, 1994, 58(24):5443-5454. [6]Rao S R, Nesset J E, Finch J A. Activation of sphalerite by Cu ions produced by cyanide action on chalcopyrite[J]. Minerals Engineering, 2011, 24(9):1025-1027. [7]Akcil A, Koldas S. Acid Mine Drainage (AMD): causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, 14(12–13):1139-1145. [8]Deng J, Wen S, Liu J, et al. New Source of Unavoidable Ions in Bornite Flotation Aqueous Solution: Fluid Inclusions[J]. Ind.eng.chem.res, 2013, 52(13):4895-4901. [9]Deng J, Wen S, Xian Y, et al. New discovery of unavoidable ions source in chalcopyrite flotation pulp: Fluid inclusions[J]. Minerals Engineering, 2013, 42(3):22-28. [10]Bai S, Wen S, Xian Y, et al. New source of unavoidable ions in galena flotation pulp: Components released from fluid inclusions[J]. Minerals Engineering, 2013, 45(3):94-99. [11]Gerson A R, Lange A G, Prince K E, et al. The mechanism of copper activation of sphalerite[J]. Applied Surface Science, 1999, 137(1–4):207-223. [12]Buckley A N, Skinner W M, Harmer S L, et al. Examination of the proposition that Cu(II) can be required for charge neutrality in a sulfide lattice Cu in tetrahedrites and sphalerite[J]. Canadian Journal of Chemistry, 2007, 85(85):767-781. [13]余润兰, 邱冠周, 胡岳华, 等.Cu2+活化铁闪锌矿的电化学[J].金属矿山, 2004(2):35-37. Yu R L, Qiu G Z, Hu Y H, et. Electrochemistry of Copper activation of marmatite[J]Metal Mine, 2004(2):35-37. [14]Chen Z, Yoon R H. Electrochemistry of copper activation of sphalerite at pH 9.2[J]. International Journal of Mineral Processing, 2000, 58(1–4):57-66. [15]I. J. Kartio,?, C. I. Basilio,? and, R.H. Yoon,?. An XPS Study of Sphalerite Activation by Copper[J]. Langmuir, 1998, 14(18):5274-5278. [16]Prestidge C A, Thiel A G, Ralston J, et al. The interaction of ethyl xanthate with copper(II)-activated zinc sulphide: Kinetic effects[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1994, 85(1):51–68. [17]Ralston J, Healy T W. Activation of zinc sulphide with Cu II, Cd II, and Pb II : I. Activation in weakly acidic media[J]. International Journal of Mineral Processing, 1980, 7(3):175-201. [18]Popov S R, Vu?ini? D R, Strojek J W, et al. Effect of dissolved lead ions on the ethylxanthate adsorption on sphalerite in weakly acidic media[J]. International Journal of Mineral Processing, 1989, 27(1–2):51-62. [19]Basilio C I, Kartio I J, Yoon R H. Lead activation of sphalerite during galena flotation[J]. Minerals Engineering, 1996, 9(8):869-879. [20]Pattrick R A D, Charnock J M, England K E R, et al. Lead sorption on the surface of ZnS with relevance to flotation: A fluorescence reflexafs study[J]. Minerals Engineering, 1998, 11(11):1025-1033. [21]Sui C C, Lee D, Casuge A, et al. Comparison of the activation of sphalerite by copper and lead[J]. Minerals & Metallurgical Processing, 1999, 16(3):53-61. [22]Popov S R, Vu?ini? D R, Ka?anik J V. Floatability and adsorption of ethyl xanthate on sphalerite in an alkaline medium in the presence of dissolved lead ions[J]. International Journal of Mineral Processing, 1989, 27(27):205-219. [23]Trahar W J, Senior G D, Heyes G W, et al. The activation of sphalerite by lead — a flotation perspective[J]. International Journal of Mineral Processing, 1997, 49(3–4):121-148. [24]Rashchi F, Sui C, Finch J A. Sphalerite activation and surface Pb ion concentration[J]. International Journal of Mineral Processing, 2002, 67(1–4):43-58. [25]Zhang Q, Rao S R, Finch J A. Flotation of sphalerite in the presence of iron ions[J]. Colloids & Surfaces, 1992, 66(2):81-89. [26]Albrecht T W J, Addai-Mensah J, Fornasiero D. Critical copper concentration in sphalerite flotation: Effect of temperature and collector[J]. International Journal of Mineral Processing, 2016, 146:15-22. [27]曾冬丽. 掺杂硫化锌的浮选行为及机理研究[D]. 广西大学, 2011. Zeng D L, Study on the Flotation Behaviors and Mechanism of Doped ZnS[D]Guangxi University. [28]陈建华, 陈晔, 曾小钦,等. 铁杂质对闪锌矿表面电子结构及活化影响的第一性原理研究[J]. 中国有色金属学报, 2009, 19(8):1517-1523. Chen J H, Chen Y, Zeng X Q, et. First principle study of effect of Fe impurity on electronic structure and activation of sphalerite surface[J] The Chinese Journal of Nonferrous Metals, 2009, 19(8):1517-1523. [29]Tong X, Song S, He J, et al. Activation of high-iron marmatite in froth flotation by ammoniacal copper(II) solution[J]. Minerals Engineering, 2007, 20(3):259-263. [30] 向井 滋;中広 吉孝 閃亜鉛鉱の銅活性化効果の除去に関する研究[J]日本鉱業会誌,1969,969(85):26-32 Shigeru MUKAI, Yoshitaka NAKAHIRO. Study on the Deactivation of Sphalerite with Acid and Ferric Ion Solutions[J] Journal of the Japan mining industry, 1969,969(85):26-32 [31]陈晔, 陈建华, 郭进. O2和CN在铜活化闪锌矿(110)表面的吸附[J].物理化学学报, 2011, 27(2):363-368. Chen Y, Chen J H, Guo J. Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface [J] Acta Phys. -Chim. Sin. 2011, 27 (2), 363-368 [32]Prestidge C A, Skinner W M, Ralston J, et al. Copper(II) activation and cyanide deactivation of zinc sulphide under mildly alkaline conditions[J]. Applied Surface Science, 1997, 108(3):333-344. [33]Rashchi F, Finch J A. Deactivation of Pb-contaminated sphalerite by polyphosphate[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 276(1-3):87-94. [34]El-Shall H E, Elgillani D A, Abdel-Khalek N A. Role of zinc sulfate in depression of lead -activated sphalerite[J].International Journal of Mineral Processing, 2000, 58(1–4):67-75. [35]Rashchi F, Finch J A, Sui C. Action of DETA, dextrin and carbonate on lead-contaminated sphalerite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 245(1):21-27. [36]Qin W, Jiao F, Sun W, et al. Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 421(11):181–192. [37]Nanthakumar. Use of silica sol in selective sulphide mineral flotation[D]McGill university [38]Khmeleva T N, Skinner W, Beattie D A. Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite[J]. International Journal of Mineral Processing, 2005, 76(1-2):43-53. [39]Dávila-Pulido G I, Uribe-Salas A, Espinosa-Gómez R. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite[J]. International Journal of Mineral Processing, 2011, 101(1–4):71-74. [40]Dávila-Pulido G I, Uribe-Salas A. Effect of calcium, sulphate and gypsum on copper-activated and non-activated sphalerite surface properties[J]. Minerals Engineering, 2014,55(1):147–153. [41]Deng M, Liu Q, Xu Z. Impact of gypsum supersaturated water on the uptake of copper and xanthate on sphalerite[J]. Minerals Engineering, 2013, 49(8):165-171. [42]Ejtemaei M, Plackowski C, Nguyen A V. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite[J]. Minerals Engineering, 2016, 89:42-51. |
[1] | Tianxiang CHEN Haijun MA Kaifeng PANG Yuantao WANG Yifei ZHANG. Mechanism and kinetics of alkaline leaching for low-grade bauxite activated by pre-roasting [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 62-69. |
[2] | Shengdong ZHANG Zhongbao HUA Yu ZHAO Xiong TONG Xian XIE. Experimental study on optimization of direct-reverse flotation of a phosphate ore by response surface methodology [J]. The Chinese Journal of Process Engineering, 2024, 24(5): 546-557. |
[3] | Wei XU Min ZHANG Hongdong YU Fangfang CHEN Guan PENG Jing LI. The mechanism study on flotation of ilmenorutile based on Bayan Obo niobium-bearing minerals with 1-hydroxyoctane-1,1-bisphosphonic acid as collector [J]. The Chinese Journal of Process Engineering, 2024, 24(12): 1442-1452. |
[4] | Shuang QIN Jianjun FANG Haiyang HE Zhilian QIU Liguo PENG Shiqin DONG. The role and mechanism of dihydromyricetin in the flotation of chalcopyrite and galena [J]. The Chinese Journal of Process Engineering, 2024, 24(11): 1335-1343. |
[5] | Hao WEN Wei QIN Hongwei YIN Yue WANG Meili WU Xu LIU Xiaomin KONG Haowen ZHANG Ziyang ZHANG Xichen ZHENG. A novel approach of harvesting microalgae based on re-frying oil and the mechanism analysis [J]. The Chinese Journal of Process Engineering, 2023, 23(9): 1359-1370. |
[6] | Pengpeng ZHANG Cheng YANG Hongming LONG Xiangpeng GAO Mingyang LI. Research progress on depression mechanism of chitosan and its derivatives during flotation [J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1150-1160. |
[7] | Haoxiang WANG Peilun SHEN Jinpeng CAI Xiaodong JIA Rong PENG Dianwen LIU. Research progress of flotation activator for complex copper oxide minerals [J]. The Chinese Journal of Process Engineering, 2023, 23(10): 1381-1389. |
[8] | Qing'an XIONG Yuming ZHANG Jiazhou LI Wei ZHANG Zhewen CHEN. Comparative study on pyrolysis kinetics of different heavy oil based on distributed activation energy model [J]. The Chinese Journal of Process Engineering, 2023, 23(10): 1421-1434. |
[9] | Rufei WEI Dongxiang MENG Jiaxin LI Hongming LONG Yulong ZHU Zhenying LI. Reduction characteristics and mechanism of ultrafine iron ore powder by CO under mechanical activation [J]. The Chinese Journal of Process Engineering, 2022, 22(7): 891-899. |
[10] | Ling LIU Siqiang JIN Binxin DONG. Kinetics and intensified leaching of valuable elements in KOH solution in alunite concentrate from copper tailings [J]. The Chinese Journal of Process Engineering, 2022, 22(11): 1528-1537. |
[11] | Sichuan PU Lanting SHI Jia HE Na BIAN Zhao LIU. Study on inactivation of Microcystis aeruginosa by dielectric barrier discharge low-temperature plasma [J]. The Chinese Journal of Process Engineering, 2022, 22(11): 1574-1583. |
[12] | Xiaohong ZHENG Weiguang LÜ Hongbin CAO Nan CAI Jin ZHAN Qingchun LI Fei KANG Zhi SUN. Leaching of valuable metals from nickel sulfide ores by mechanical activation [J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1064-1073. |
[13] | Mingyang LI Ze CHEN De LIAN Xiangpeng GAO Hongming LONG Xiong TONG. Research progress of regulators in iron mineral flotation [J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1003-1011. |
[14] | Bo YANG Xiong TONG Xiao WANG Yonggang XIE Xian XIE . Study on the comprehensive recovery of zinc from tailings of a lead-zinc ores from Yunnan province [J]. The Chinese Journal of Process Engineering, 2021, 21(6): 704-712. |
[15] | Wenjie REN Huixin JIN Chaoyi CHEN Benjun XU Zhenshan XIE. Study of roasting–dissolving performance of high-sulfur and high-silicon bauxite [J]. Chin. J. Process Eng., 2020, 20(9): 1045-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||