Chin. J. Process Eng. ›› 2018, Vol. 18 ›› Issue (5): 924-933.DOI: 10.12034/j.issn.1009-606X.217430
• Reviews • Previous Articles Next Articles
Yingqiang MA1,2, Qiuyue SHENG1*, Youduo LI1, Langfeng TANG1
Received:
2017-12-19
Revised:
2018-03-18
Online:
2018-10-22
Published:
2018-10-12
马英强1,2, 盛秋月1*, 李有多1, 唐浪峰1
通讯作者:
盛秋月 492384712@qq.com
基金资助:
Yingqiang MA Qiuyue SHENG Youduo LI Langfeng TANG. A review of crystal chemistry application in copper oxide minerals flotation[J]. Chin. J. Process Eng., 2018, 18(5): 924-933.
马英强 盛秋月 李有多 唐浪峰. 晶体化学在氧化铜矿物浮选中的应用研究进展[J]. 过程工程学报, 2018, 18(5): 924-933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217430
[1]赵珊茸, 边秋娟, 王勤燕. 结晶学及矿物学[M].第二版,北京:高等教育出版社, 2011:11-33. Zhao S R, Bian Q J, Wang Q Y. Crystallography and Mineralogy[M]. The Second Edition, Beijing: Higher Education Press, 2011:11-33. [2]廖立兵, 夏志国. 晶体化学及晶体物理学[M]. 第二版,北京:科学出版社, 2013:9-75. Liao L B, Xia Z G. Crystal Chemistry and Crystal Physics[M]. The Second Edition, Beijing: Science Press, 2013:9-75. [3]余伟. 氧化铜矿石的选矿技术现状与发展[J]. 世界有色金属, 2017(13):60-61. Yu W. Present Situation and Development of Beneficiation Technology of Oxidized Copper Ore[J]. World Nonferrous Metals, 2017(13) :60-61. [4]Baltrusaitis J, Grassian V H. Calcite (1 0 1 ? 4) Surface in Humid Environments [J]. Surface Science, 2009, 603(603). [5]Gao Z Y, Sun W, Yue-Hua H U, et al. Anisotropic Surface Broken Bond Properties and Wettability of Calcite and Fluorite Crystals [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5):1203-1208. [6]Fa K, Nguyen A V, Miller J D. Interaction of Calcium Dioleate Collector Colloids with Calcite and Fluorite Surfaces as Revealed by AFM Force Measurements and Molecular Dynamics Simulation [J]. International Journal of Mineral Processing, 2006, 81(3):166-177. [7]于洋,孙传尧,卢烁十.白钨矿与含钙矿物可浮性研究及晶体化学分析[J]. 中国矿业大学学报, 2013, 42(2):278-283. Yu Y, Sun C Y, Lu S S. Study of Floatability and Crystal Chemistry Analysis of Scheelite and Calcium Minerals[J]. Journal of China University of Mining & Technology, 2013, 42(2):278-283. [8]朱一民,韩跃新. 晶体化学在矿物材料中的应用[M].北京:冶金工业出版社, 2007:14-45. Zhu Y M, Han Y X. Application of Crystal Chemistry in Mineral Materials[M]. Beijing: Metallurgical Industry Press, 2007:14-45. [9]孙传尧.硅酸盐矿物浮选原理[M]. 北京:科学出版社, 2001:2-15. Sun C Y. Flotation Principles of Silicate Minerals[M]. Beijing: Science Press,2001:2-15. [10]陈康传.晶体化学基本原理在浮选分离中的意义[J].大地构造与成矿学,1992(2): 203-204. Chen K C. Significance of Crystal Chemistry Basic Principle Used in Flotation Separation[J]. Geotectonica Et Metallogenia, 1992(2): 203-204 [11]李正勤.晶体化学基本原理在浮选中的应用[J]. 湖南有色金属, 1985(3):20-24. Li Z Q. Application of Crystal Chemistry Basic Principle in Minerals Flotation[J]. Hunan Nonferrous Metals, 1985(3):20-24. [12]印万忠, 吴凯. 难选氧化铜矿选冶技术现状与展望[J]. 有色金属工程, 2013, 3(6):66-70. Yin W Z, Wu K. Current Situation and Prospect of Refractory Copper Oxide Ore Dressing and Metallurgy[J]. Nonferrous Metals Engineering, 2013, 3(6): 66-70. [13]张强,钟琼,贾振宏,等.世界铜矿资源与矿山铜生产状况分析[J].矿产与地质,2014 (2):196-201. Zhang Q, Zhong Q, Jia Z H, et al. An Analysis on Global Copper Ore Resource and Copper Production of Mines[J]. Mineral Resources and Geology, 2014 (2):196-201. [14]方建军,李艺芬.氧化铜矿的工艺矿物学特征与选矿工艺研究[J].云南冶金,2005, 34(4):50-53. Fang J J. Li Y F. Study on Technological Mineralogy and Concentration of Oxide Copper Ore[J]. Yunnan Metallurgy,2005,34(4):50-53. [15]Kordosky G A. Copper Recovery Using Leach/Solvent Extraction/Electrowinning Technology: Forty Years of Innovation, 2.2 Million Tonnes of Copper Annually[J]. Journal- South African Institute of Mining and Metallurgy, 2002, 102(8):445-450. [16]Li F, Zhong H, Xu H, et al. Flotation Behavior and Adsorption Mechanism of α-Hydroxyoctyl Phosphinic Acid to Malachite[J]. Minerals Engineering, 2015, 71:188-193. [17]Lee K, Archibald D, Mclean J, et al. Flotation of Mixed Copper Oxide and Sulphide Minerals With Xanthate and Hydroxamate Collectors[J]. Minerals Engineering, 2009, 22(4):395-401. [18]Chavez W X J. The Geochemical Settings of Copper Oxide Ore Deposits: Recognition of Eh-pH Conditions and the Weathering of Copper Mineralization[C]// Guidance, Navigation & Control Conference, IEEE Chinese. Springer Milan, 2001:261-264. [19]Srdjan M B. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 2. Flotation of Gold, PGM and Oxide Minerals [M]. Amsterdam: Elsevier Science, 2010: 47?50. [20]Sun X L, Chen B Z, Yang X Y, et al. Technological Conditions and Kinetics of Leaching Copper from Complex Copper Oxide Ore[J]. Journal of Central South University, 2009, 16(6): 936-941. [21]Klauber C. Fracture-Induced Reconstruction of a Chalcopyrite (CuFeS2) Surface Craig Klauber. Surface and Interface Analysis, 2003; 35: 415–428[J]. Surface & Interface Analysis, 2003, 35(9):770-770. [22]周乐光. 矿石学基础[M].第3版,北京:冶金工业出版社, 2007:20-91. Zhou L G. Ore Mineralogy Bases[M]. The Third Edition, Beijing: Metallurgical Industry Press ,2007:20-91. [23]Süsse P. Verfeinerung der Kristallstruktur des Malachits, Cu2(OH)2CO3 [J]. Acta Crystallog- Raphica, 1966, 53(3):80-80. [24]Zigan F, Schuster H D. Verfeinerung der Struktur von Azurit, Cu3(OH)2(CO3)2, durch Neutronenbeugung [J]. Zeitschrift für Kristallographie-Crystalline Materials, 1972, 135(1-6):416-436. [25]彭松山,陈太红,谌家军.孔雀石和蓝铜矿的局域结构和吸收光谱的研究[J]. 硅酸盐通报, 2008, 27(5):1040-1043. Peng S S, Chen T H, Zhan J J. Investigation on the Local Structure, Optical Absorption Spectra of Malachite and Azurite[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(5):1040-1043. [26]徐晓军. 硅孔雀石结构特性和浮选方法[J]. 云南冶金, 1990(1):12-15. Xu X J. Structure Characteristics and Flotation Methods of Chrysocolla [J]. Yunnan Metallurgy, 1990(1):12-15. [27]戈保梁, 张文彬. 硅孔雀石的活化浮选[J]. 云南冶金, 1995(4):15-19. Ge B L, Zhang W B. Activated Flotation of Chrysocolla [J]. Yunnan Metallurgy, 1995(4):15-19. [28]J. Laskowski,刘建军.硅孔雀石浮选的研究[J].国外金属矿选矿,1987(10):22-31+ 47. J. Laskowski, Liu J J. Study on the Flotation of Chrysocolla [J]. Metallic Ore Dressing Abroad,1987(10):22-31+ 47. [29]许志华. 铜工艺矿物学[J]. 材料研究与应用, 1999,9(1):1-8. Xu Z H, Technological Mineralogy of Copper[J]. Materials Research and Application, 1999,9(1):1-8. [30]邵美林.鲍林规则与键价理论[M].北京:高等教育出版社,1993:3-13. Shao M L. Pauling Rule and Bond-Valence Theory[M]. Beijing: Higher Education Press ,1993:3-13. [31]刘殿文,张文彬,文书明.氧化铜矿浮选技术[M]. 北京:冶金工业出版社,2009:15-80 Liu D W, Zhang W B, Wen S M. Flotation Technologies of Copper Oxide Ore[M]. Beijing: Metallurgical Industry Press,2009:15-80. [32]赵援,杨温琪,姚建成,等.螯合活化剂对石青、水胆矾、砷钙铜矿及硅孔雀石浮选活化的研究[J]. 有色金属工程, 1994,46(4):32-36. Zhao Y, Yang W Q, Yao J C, et al. Study on the Action of Chelating Agents in Flotation of Azurite, Brochantite, Conichalcite and Chrysocolla [J]. Nonferrous Metals Engineering, 1994,46(4):32-36. [33]J. LASKOWSKI, D. W. FUERSTENAU, G. GONZALEZ, et al. Studies on the Flotation of Chrysocolla [J]. Mineral Processing & Extractive Metallurgy Review, 1985, 2(2):135-155. [34]徐晓军, 刘邦瑞. 有机螯合剂活化硅孔雀石浮选特性研究[J]. 昆明理工大学学报(自然科学版), 1993,18(3):36-41. Xu X J, Liu B R. The Properties of the Flotation of Chrysocolla Using Organic Chelating Reagents as Activators[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 1993,18(3):36-41. [35]刘建军, 吉干芳, 王淀佐. 孔雀石固—液界面性质及其可浮性研究[J]. 矿冶工程, 1990, 10(1):33-36. Liu J J, Ji G F, Wang D Z. The Solid - Liquid Interface Properties and Floatability of Malachite[J]. Mining and Metallurgical Engineering, 1990, 10(1):33-36. [36]胡绍彬,罗才高.深度活化浮选汤丹氧化铜矿的研究及应用[J].云南冶金,1997,26(5): 17-24. Hu S B, Luo C G. Study and Application of Deep Activated Floatation of Tang Dan Copper Oxide Ore[J]. Yunnan Metallurgy,1997,26(5): 17-24. [37]王福良,孙传尧.黄药捕收剂浮选未活化孔雀石行为的分子力学分析[J].矿冶,2008, 17(2):1-5. Wang F L, Sun C Y. Molecular Mechanics Analysis of the Unactivated Malachite Flotation Behavior by Xanthates [J]. Mining and Metallurgy,2008, 17(2):1-5. [38]胡岳华,王淀佐.脂肪酸钠浮选盐类矿物的作用机理研究[J].矿冶工程, 1990, 10(2): 20-23. Hu Y H, Wang D Z. Study on Mechanism of Fatty Acid Sodium Flotation of Salt-type Minerals[J]. Mining and Metallurgical Engineering, 1990, 10(2): 20-23. [39]Wang J, Cheng H W, Zhao H B, et al. Flotation Behavior and Mechanism of Rutile in Presence of Sodium Oleate[J]. Chinese Journal of Nonferrous Metals, 2014, 24(3):820-825. [40]Carrasco J, Hodgson A, Michaelides A. A Molecular Perspective of Water at Metal Interfaces[J]. Nature Materials, 2012, 11(8):667-674. [41]孙乾予, 印万忠, 曹少航, 等.油酸钠直接浮选孔雀石的机理研究[J].东北大学学报(自然科学版), 2017, 38(5):716-719. Sun Q Y, Yin W Z, Cao S H, et al. Mechanism Study of Direct Flotation on Malachite by Sodium Oleate[J]. Journal of Northeastern University (Natural Science), 2017, 38(5):716-719. [42]王淀佐. 浮选剂作用原理及应用[M]. 北京:冶金工业出版社, 1982:15-67. Wang D Z. Action Principle and Application of Floatation Agent[M]. Beijing: Metallurgical Industry Press, 1982:15-67. [43]徐晓军,王占歧,刘邦瑞.硅孔雀石浮选时螯合剂对黄药的活化作用及共吸附特性研究[J]. 矿冶工程, 1993, 13(2):41-46. Xu X J, Wang Z Q, Liu B R. Activation Effect of Chelating Agent on Xanthate and Their Co-adsorption Properties[J]. Mining and Metallurgical Engineering, 1993, 13(2):41-46. [44]陈波.索拉沟难选氧化铜矿石选矿试验研究[D]. 沈阳:东北大学, 2014:2-8. Chen B. Dressing Experimental Study on Refractory Oxided Copper Ore of Suolagou [D]. Shenyang: Northeastern University ,2014:2-8. [45]李艳君,江登榜,邓文,等.新型有机螯合捕收剂YAM2的选矿特性研究[J]. 现代矿业, 2013, 29(9):99-100. Li Y J, Jiang D B, Deng W, et al. Study on the Characteristics of a New Organic Chelating Collector YAM2 [J]. Modern Mining, 2013, 29(9):99-100. [46]江登榜.黄药和羟肟酸浮选复杂氧化铜矿的密度泛函理论研究[D]. 昆明:云南大学, 2013:1-9. Jiang D B. Density Functional Theory Study on Floatation by Xanthate and Hydroxamic Acid of Complex Copper Oxide Ores[D]. Kunming: Yunnan University, 2013:1-9. [47]张琳,方建军,赵敏捷,等.硅孔雀石活化浮选研究进展[J].矿产综合利用,2017(3):17-21. Zhang L, Fang J J, Zhao M J, et al. Research and Application Progress of Activation of Floating Chrysocolla [J]. Multipurpose Utilization of Mineral Resources,2017(3):17-21. [48]Raghavan S, Adamec E, Lee L. Sulfidization and Flotation of Chrysocolla and Brochantite [J]. International Journal of Mineral Processing, 1983, 12(1):173-191. [49]刘诚.典型氧化铜矿孔雀石的硫化浮选研究与应用[D]. 赣州:江西理工大学, 2012:1-7. Liu C. Study and Application of Sulfuration and Flotation of Malachite in Typical Copper Oxide Ore [D]. Ganzhou: Jiangxi University of Science and Technology, 2012:1-7. [50] 胡岳华,王淀佐.孔雀石/菱锌矿浮选溶液化学研究[J].有色金属工程,1996(2):40-44. Hu Y H, Wang D Z. Flotation Solution Chemistry Study of Malachite / Calamine[J]. Nonferrous Metals Engineering, 1996(2):40-44. [51]张覃,张文彬,刘邦瑞.硫酸铵在孔雀石的黄药直接浮选中的相转移催化机理研究[J]. 昆明理工大学学报(自然科学版), 1997(3):15-18. Zhang T, Zhang W B, Liu B R.A Study on the Mechanism of Phase- Transfer-Catalyzation in Malachite Direct Flotation With Xanthate by the Use of Ammonium Sulphate [J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 1997(3):15-18. [52]戈保梁,张覃. 硫酸铵在氧化铜矿相转移活化浮选中的作用[J]. 有色金属工程, 1999(1):22-24. Ge B L, Zhang T. Effects of Ammonium Sulfate on Phase Transferring and Activating Process of Oxidized Copper ores[J]. Nonferrous Metals Engineering, 1999(1):22-24. [53]Chen Y, Chen J, Guo J. A DFT Study on the Effect of Lattice Impurities on the Electronic Structures and Floatability of Sphalerite[J]. Minerals Engineering, 2010, 23(14):1120-1130. [54]Chen J H, Ye C, Yu-Qiong L I. Effect of Vacancy Defects on Electronic Properties and Activation of Sphalerite (110) Surface by First-principles[J]. 中国有色金属学报(英文版), 2010, 20(3):502-506. [55]毛莹博. 铵—胺盐强化硫化孔雀石浮选理论与试验研究[D]. 昆明:昆明理工大学, 2016:1-6. Mao Y B. Flotation Theoretical and Experimental Study on Reinforced Sulfuration Flotation of Malachite by Ammonium-amine Salt [D]. Kunming: Kunming University of Science and Technology, 2016:1-6. [56]Lebernegg S, Tsirlin A A, Janson O, et al. Spin Gap in Malachite Cu2(OH)2CO3 and Its Evolution under Pressure [J]. Physical Review B, 2013, 88(22):5647-5654. [57]Janod E, Leonyuk L, Maltsev V. Experimental Evidence for a Spin Gap in the s =1/2 Quantum Antiferromagnet Cu2(OH)2CO3[J]. Solid State Communications, 2000, 116(9):513-518. [58]方建军,李艺芬,张文彬.高钙镁难选氧化铜矿处理技术的进展[J].矿冶,2008,17 (4):55-57. Fang J J, Li Y F, Zhang W B. Advance on Treatment Technology for Refractory Oxidized Copper Ores with Gangues Containing High Calcium and Magnesium[J]. Mining and Metallurgy, 2008, 17 (4): 55-57. [59]张文彬.乙二胺磷酸盐作用机理初探[J]. 有色金属(选矿部分),1980(5):46-48. Zhang W B. Study on the Mechanism of Ethylenediamine Phosphate Action[J]. Nonferrous Metals (Mineral Processing) ,1980(5):46-48. [60]刘殿文, 尚旭, 张文彬,等. 氧化铜矿物抗抑制作用的表面形貌研究[J]. 金属矿山, 2009, V39(3):59-60. Liu D W, Shang X, Zhang W B, et al. Surface Morphology of Copper Oxide Minerals in Relation with Anti-depression Function [J]. Metal Mine, 2009, V39(3):59-60. [61]Pearse M J. An Overview of the Use of Chemical Reagents in Mineral Processing[J]. Minerals Engineering, 2005, 18(2):139-149. [62]Fuerstenau D W, Herrera-Urbina R, Mcglashan D W. Studies on the Applicability of Chelating Agents as Universal Collectors for Copper Minerals[J]. International Journal of Mineral Processing, 2000, 58(1):15-33. |
[1] | Shengdong ZHANG Zhongbao HUA Yu ZHAO Xiong TONG Xian XIE. Experimental study on optimization of direct-reverse flotation of a phosphate ore by response surface methodology [J]. The Chinese Journal of Process Engineering, 2024, 24(5): 546-557. |
[2] | Wei XU Min ZHANG Hongdong YU Fangfang CHEN Guan PENG Jing LI. The mechanism study on flotation of ilmenorutile based on Bayan Obo niobium-bearing minerals with 1-hydroxyoctane-1,1-bisphosphonic acid as collector [J]. The Chinese Journal of Process Engineering, 2024, 24(12): 1442-1452. |
[3] | Shuang QIN Jianjun FANG Haiyang HE Zhilian QIU Liguo PENG Shiqin DONG. The role and mechanism of dihydromyricetin in the flotation of chalcopyrite and galena [J]. The Chinese Journal of Process Engineering, 2024, 24(11): 1335-1343. |
[4] | Hao WEN Wei QIN Hongwei YIN Yue WANG Meili WU Xu LIU Xiaomin KONG Haowen ZHANG Ziyang ZHANG Xichen ZHENG. A novel approach of harvesting microalgae based on re-frying oil and the mechanism analysis [J]. The Chinese Journal of Process Engineering, 2023, 23(9): 1359-1370. |
[5] | Pengpeng ZHANG Cheng YANG Hongming LONG Xiangpeng GAO Mingyang LI. Research progress on depression mechanism of chitosan and its derivatives during flotation [J]. The Chinese Journal of Process Engineering, 2023, 23(8): 1150-1160. |
[6] | Panpan MU Hongling ZHANG Taiping LOU Peng ZHOU Haiqin SHI Linming CHEN Hongbin XU. Preparation of chromic oxide green by thermal decomposition of CrOOH with base center orthorhombic structure and trigonal structure [J]. The Chinese Journal of Process Engineering, 2023, 23(2): 272-279. |
[7] | Haoxiang WANG Peilun SHEN Jinpeng CAI Xiaodong JIA Rong PENG Dianwen LIU. Research progress of flotation activator for complex copper oxide minerals [J]. The Chinese Journal of Process Engineering, 2023, 23(10): 1381-1389. |
[8] | Mingyang LI Ze CHEN De LIAN Xiangpeng GAO Hongming LONG Xiong TONG. Research progress of regulators in iron mineral flotation [J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1003-1011. |
[9] | Bo YANG Xiong TONG Xiao WANG Yonggang XIE Xian XIE . Study on the comprehensive recovery of zinc from tailings of a lead-zinc ores from Yunnan province [J]. The Chinese Journal of Process Engineering, 2021, 21(6): 704-712. |
[10] | Mingyang LI De LIAN Junjie HAO Yiming HU Xiangpeng GAO. Effect mechanism of Ca2+ and Mg2+ in water on the floatability of specularite and chlorite [J]. Chin. J. Process Eng., 2020, 20(8): 959-969. |
[11] | Huichao JI Quanjun LIU Xu JIANG Jingshen DONG. Experimental study on separation of lead and zinc from tailings with high mud content in Yunnan Province [J]. Chin. J. Process Eng., 2020, 20(8): 912-920. |
[12] | Jie LI Cuicui JI Xian XIE Bowen KANG Peiqiang FAN. Experimental study on separation of zinc and silver flotation from a silver-rich zinc concentrate in Yunnan [J]. Chin. J. Process Eng., 2020, 20(8): 938-946. |
[13] | Lin MA Rongdong DENG Dingquan XING Hongxi CHEN Xingying FAN Tingyi HUANG. Growth process of CO2 bubbles on calcite surface in sulfuric acid solution [J]. Chin. J. Process Eng., 2020, 20(2): 222-229. |
[14] | Mingbao LIU Wanzhong GUO Siyu TIAN Mei CHEN. Flotation mechanisms of rutile in synergistic system composed by sodium oleate and sodium benzohydroxamide [J]. Chin. J. Process Eng., 2020, 20(11): 1296-1303. |
[15] | Jikang HAN Weizhi WANG Wei ZHANG Zhiwei SHAN Dong WANG. Research status of hydrodynamic characteristic parameters of flotation equipment [J]. Chin. J. Process Eng., 2020, 20(10): 1121-1133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||