Chin. J. Process Eng. ›› 2019, Vol. 19 ›› Issue (1): 55-63.DOI: 10.12034/j.issn.1009-606X.218139
• Reviews • Previous Articles Next Articles
Hanlu QI, Jiajun WANG*, Xueping GU, Lianfang FENG
Received:
2018-02-19
Revised:
2018-04-19
Online:
2019-02-22
Published:
2019-02-12
Contact:
WANG Jia-jun jiajunwang@zju.edu.cn
Supported by:
祁晗璐, 王嘉骏*, 顾雪萍, 冯连芳
通讯作者:
王嘉骏 jiajunwang@zju.edu.cn
基金资助:
Hanlu QI Jiajun WANG Xueping GU Lianfang FENG. Research progress on agglomeration mechanisms and fluidization behavior of cohesive particles[J]. Chin. J. Process Eng., 2019, 19(1): 55-63.
祁晗璐 王嘉骏 顾雪萍 冯连芳. 黏性颗粒团聚机理及流化特性研究进展[J]. 过程工程学报, 2019, 19(1): 55-63.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.218139
[1]Kennedy D, Norman C.What don't we know?[J].Science, 2005, 309(5731):75-75 [2]孙其诚, 王光谦.颗粒物质力学导论[M]. 北京:科学出版社, 2009:前言1. [3]Sun Q, Wang G.Introduction to the mechanics of particulate matter [M]. Beijing: Science Press, 2009: preface 1. [4]陆夕云, 林建忠.能否发展关于湍流动力学和颗粒材料运动学的综合理论?[J].科学通报, 2017, 62(11):1115-1118 [5]Lu X, Lin J.Can we develop a general theory of the dynamics of turbulent flows and motion of granular materials?[J].Chinese Science Bulletin, 2017, 62(11):1115-1118 [6]Zhou Y, Shi Q, Huang Z, et al.Particle agglomeration and control of gas-solid fluidized bed reactor with liquid bridge and solid bridge coupling actions[J].Chemical Engineering Journal, 2017, 330:840-851 [7]张永俊, 王嘉骏, 顾雪萍, 等.黏性颗粒流态化的气固流动模型研究进展[J].过程工程学报, 2014, 14(3):535-540 [8]Zhang Y, Wang J, Gu X, et al.Research progress in numerical models on gas-solid fluidization of cohesive particles[J].The Chinese Journal of Process Engineering, 2014, 14(3):535-540 [9]Zhou T, Li H.Force balance modelling for agglomerating fluidization of cohesive particles[J].Powder Technology, 2000, 111(1):60-65 [10]Geldart D.Types of gas fluidization[J].Powder Technology, 1973, 7(5):285-292 [11]马吉亮.接触式粘性力对颗粒流态化的影响机理研究[D]. 东南大学, 2016.1-11 [12]Ma J.Investigation on fluidization dynamics of particles with contact cohesive force[D]. Southeast University, 2016.1-11 [13]Liang X, Duan H, Zhou T, et al.Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J].Advanced Powder Technology, 2014, 25(1):236-243 [14]王希.粘性大颗粒流态化过程流化粘结特性研究[D]. 清华大学, 2011.1-22. [15]Wang X.Study on fluidizationand bond characteristics of coarse cohesive particles in fluidized process[D]., Tsinghua University, 2011.1-22. [16]Lamarche C Q, Leadley S, Liu P, et al.Method of quantifying surface roughness for accurate adhesive force predictions[J].Chemical Engineering Science, 2016, 158:140-153 [17]Liu P, Lamarche C Q, Kellogg K M, et al.Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness[J].Aiche Journal, 2016, 62(10):3529-3537 [18]Lu H, Zhong J, Cao G P, et al.Gravitational discharge of fine dry powders with asperities from a conical hopper[J].Aiche Journal, 2017, 64(2):427-436 [19]Liu G, Li S, Yao Q.A JKR-based dynamic model for the impact of micro-particle with a flat surface[J].Powder Technology, 2011, 207(1-3):215-223 [20]Chaouki J, Chavarie C, Klvana D, et al.Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J].Powder Technology, 1985, 43(2):117-125 [21]Iwadate Y, Horio M.Prediction of agglomerate sizes in bubbling fluidized beds of group C powders[J].Powder Technology, 1998, 100(2):223-236 [22]Lauga C, Chaouki J, Klvana D, et al.Improvement of the fluidizability of NiSiO2 aerogels by reducing interparticle forces[J].Powder Technology, 1991, 65(s 1–3):461-468 [23]杨遥.静电流化床中流体力学特性的调控机制研究[D]. 浙江大学, 2016.1-38. [24]Yang Y.Regulation of hydrodynamics in the fluidized bed with electrostatic[D]., Zhejiang University, 2016.1-38. [25]Fotovat F, Bi X T, Grace J R.Electrostatics in gas-solid fluidized beds: A review[J].Chemical Engineering Science, 2017, 173:303-334 [26]柳冠青.范德华力和静电力下的细颗粒离散动力学研究[D]. 清华大学, 2011.1-14. [27]Liu G.Discrete element methods of fine particles dynamics in presence of van der waals and electrostatic forces[D]. Tsinghua University, 2011.1-14. [28]Wang F, Wang J, Yang Y.Distribution of electrostatic potential in a gas?solid fluidized bed and measurement of bed level[J].Industrial & Engineering Chemistry Research, 2008, 47(23):9517-9526 [29]Song D, Mehrani P.Mechanism of particle build-up on gas-solid fluidization column wall due to electrostatic charge generation[J].Powder Technology, 2017, 316:166-170 [30]Song D, Salama F, Matta J, et al.Implementation of faraday cup electrostatic charge measurement technique in high-pressure gas-solid fluidized beds at pilot-scale[J].Powder Technology, 2016, 290:21-26 [31]Liu G, Marshall J S, Li S Q, et al.Discrete-element method for particle capture by a body in an electrostatic field[J].International Journal for Numerical Methods in Engineering, 2010, 84(13):1589-1612 [32]Dong K, Zhang Q, Huang Z, et al.Experimental investigation of electrostatic effect on bubble behaviors in gas‐solid fluidized bed[J].Aiche Journal, 2015, 61(4):1160-1171 [33]Dong K, Zhang Q, Huang Z, et al.Experimental investigation of electrostatic effect on particle motions in gas‐solid fluidized beds[J].Aiche Journal, 2015, 61(11):1-14 [34]Mikami T, Kamiya H, Horio M.The mechanism of defluidization of iron particles in a fluidized bed[J].Powder Technology, 1996, 89(3):231-238 [35]郭庆杰, 王昕, 岳光溪, 等.高温流化床的流化特性及结焦非流化行为[J].燃烧科学与技术, 2002, 8(2):130-134 [36]Guo Q, Wang X, Yue G, et al.Flow characteristics and defluidization behavior with agglomeration at high temperature fluidized bed[J].Journal of Combustion Science and Technology, 2002, 8( 2):130-134 [37]赵硕, 栾超, 由长福.温度、接触压力与时间对燃煤飞灰固体桥力的影响规律[J].化工学报, 2016, 67(6):2542-2547 [38]Zhao S, Luan C, You C.Effect of temperature,contact pressure and duration on solid-bridge force of coal ash[J].Journal of Chemical Industry and Engineering(China), 2016, 67(6):2542-2547 [39]Ennis B J, Li J, Tardos G I, et al.The influence of viscosity on the strength of an axially strained pendular liquid bridge[J].Chemical Engineering Science, 1990, 45(10):3071-3088 [40]Mikami T, Kamiya H, Horio M.Numerical simulation of cohesive powder behavior in a fluidized bed[J].Chemical Engineering Science, 1998, 53(10):1927-1940 [41]Shi D, Mccarthy J J.Numerical simulation of liquid transfer between particles[J].Powder Technology, 2008, 184(1):64-75 [42]Girardi M, Radl S, Sundaresan S.Simulating wet gas–solid fluidized beds using coarse-grid CFD-DEM[J].Chemical Engineering Science, 2016, 144:224-238 [43]韩笑.气固流化床中持液颗粒的流化特性及反应器模型研究[D]. 浙江大学, 2013.34-49. [44]Han X.Research on fluidization characteristics of liquid-containing particles and reactor modeling in gas-solid fluidized bed [D]., Zhejiang University, 2013.34-49. [45]Yakov I, Rabinovich, Madhavan S, Esayanur, Brij M, Moudgil.Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment[J].Langmuir: the ACS journal of surfaces and colloids, 2005, 21(24):10992-7 [46]Boyce C M, Ozel A, Kolehmainen J, et al.Analysis of the effect of small amounts of liquid on gas–solid fluidization using CFD‐DEM simulations[J].Aiche Journal, 2017, 63(12):5290-5302 [47]Wang T, He Y, Tang T, et al.Experimental and numerical study on a bubbling fluidized bed with wet particles[J].Aiche Journal, 2016, 62(6):1970-1985 [48]Askarishahi M, Salehi M S, Radl S.Full‐physics simulations of spray‐particle interaction in a bubbling fluidized bed[J].Aiche Journal, 2017, 63(7):2569-2587 [49]Wu M, Radl S, Khinast J G.A model to predict liquid bridge formation between wet particles based on direct numerical simulations[J].Aiche Journal, 2016, 62(6):1877-1897 [50]Weber M W, Hrenya C M.Square-well model for cohesion in fluidized beds[J].Chemical Engineering Science, 2006, 61(14):4511-4527 [51]Ennis B J, Tardos G, Pfeffer R.A microlevel-based characterization of granulation phenomena[J].Powder Technology, 1991, 65(1–3):257-272 [52]Boyce C M, Ozel A, Kolehmainen J, et al.Growth and breakup of a wet agglomerate in a dry gas–solid fluidized bed[J].Aiche Journal, 2017, 63(7):2520-2527 [53]Shao J, Guo Z, Tang H.Influence of temperature on sticking behavior of iron powder in fluidized bed[J].Isij International, 2011, 51(8):1290-1295 [54]Ge W, Wang W, Yang N, et al.Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm[J].Chemical Engineering Science, 2011, 66(19):4426-4458 [55]Li J, Kong J, He S, et al.Self-agglomeration mechanism of iron nanoparticles in a fluidized bed[J].Chemical Engineering Science, 2017, 177:455-463 [56]Zi C, Lungu M, Huang Z, et al.Investigation of unstable solids circulation behavior in a circulating fluidized bed with sweeping bend return using pressure frequency analysis[J].Powder Technology, 2016, 294:159-167 [57]Zhou Y, Yang L, Lu Y, et al.Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique[J].Chemical Engineering Journal, 2017, 334:1484-1492 [58]Yang Y, Huang Z, Zhang W, et al.Effects of agglomerates on electrostatic behaviors in gas–solid fluidized beds[J].Powder Technology, 2016, 287:139-151 [59]Zhang Q, Dong K, Zhou Y, et al.A comparative study of electrostatic current and pressure signals in a MSFC gas–solid fluidized bed[J].Powder Technology, 2016, 287:292-300 [60]Yang Y, Zhang Q, Zi C, et al.Monitoring of particle motions in gas-solid fluidized beds by electrostatic sensors[J].Powder Technology, 2017, 308:461-471 [61]Penn A, Tsuji T, Brunner D O, et al.Real-time probing of granular dynamics with magnetic resonance[J].Science Advances, 2017, 3(9):e1701879- [62]Yang Y, Zi C, Huang Z, et al.CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds[J].Powder Technology, 2016, 308:422-433 [63]Kolehmainen J, Ozel A, Boyce C M, et al.A hybrid approach to computing electrostatic forces in fluidized beds of charged particles[J].Aiche Journal, 2016, 62(7):2282-2295 [64]Liu D, Van Wachem B G M, Mudde R F, et al.An adhesive CFD‐DEM model for simulating nanoparticle agglomerate fluidization[J].Aiche Journal, 2016, 62(7):2259-2270 [65]Gan J, Zhou Z, Yu A.CFD–DEM modeling of gas fluidization of fine ellipsoidal particles[J].Aiche Journal, 2016, 62(1):62-77 [66]Wu M, Khinast J G, Radl S.The effect of liquid bridge model details on the dynamics of wet fluidized beds[J].Aiche Journal, 2018, 64:437-456 |
[1] | Xu WANG Guohui SU Ting LI Zhennan HAN Liangliang FU Guangwen XU. Reaction and gas-solid flow characteristics of calcium carbide synthesis in a fluidized bed [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 159-168. |
[2] | Xindi ZHANG Jie ZHAO Jianhua GUO Weiyi ZHANG. Effect of straight bend ratio of lower elbows on the stable fluidization performance of a new type of closely spaced liquid-solid circulating fluidized bed heat exchanger [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1016-1026. |
[3] | Jianyi CHEN Min XU Cang TONG Caifeng HUANG Xiulan HUAI. CFD-DEM-based simulation of Ca(OH)2/CaO thermochemical energy storage process in a novel baffled moving bed reactor [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 894-903. |
[4] | Jianqing Pi Mingli WANG Ruyi YANG Haidong ZHANG Xiaona REN Qingshan HUANG Ping LI. Advances in wet particle size-grading technologies and precise grading of aluminum hydroxide [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 647-659. |
[5] | Fan DUAN Xuan HE Qiang ZHOU. Fluid-particle and particle-particle drag forces in moderate-Reynolds-number bidisperse suspensions [J]. The Chinese Journal of Process Engineering, 2024, 24(3): 297-314. |
[6] | Qinjian SHEN Shijie DONG Dancheng ZHANG Hui GUO Yinling SONG Xiaoxing LIU. DEM modeling of resonant motion of particles inside moving bed [J]. The Chinese Journal of Process Engineering, 2023, 23(6): 826-836. |
[7] | Xingkun WANG Xuhui ZHANG Hui GUO Xiaoxing LIU. Discrete modeling of the end-wall effect on particle axial movement in horizontal drum [J]. The Chinese Journal of Process Engineering, 2023, 23(2): 207-215. |
[8] | Xu GAO Jie LEI Zhanxia DI Shanping LIU Yunfeng SONG Hongming LONG. Numerical simulation of blending effectiveness of forcing mixer based on EDEM [J]. The Chinese Journal of Process Engineering, 2023, 23(11): 1530-1540. |
[9] | Yulong TIAN Xiushan YANG Xingjian KONG Dehua XU Zhiye ZHANG. Experiment and simulation of turbulent fluidization characteristics of phosphogypsum particles [J]. The Chinese Journal of Process Engineering, 2022, 22(9): 1224-1231. |
[10] | Guilong XIONG Wenkang SU Anqi WANG Yize WANG. Numerical simulation of effect of particle shape on tablet particles motion characteristics in a pan coater [J]. The Chinese Journal of Process Engineering, 2022, 22(9): 1232-1243. |
[11] | Bo JIN Yaxin ZHANG. Numerical simulation of CO2 hydrogenation system in mixed catalyst bed at particle scale [J]. The Chinese Journal of Process Engineering, 2022, 22(8): 1040-1052. |
[12] | Shuguang GONG Ming LIAO Xingfu LU Zhijian ZUO Kejian LIU. Study on granulating mechanism of iron ore powder in drum mixer based on liquid-bridge effect [J]. The Chinese Journal of Process Engineering, 2022, 22(2): 232-239. |
[13] | Yaxiong YU Fan DUAN Yu ZHANG Qiang ZHOU. Discrete relaxation model for coarse-grained CFD-DEM [J]. The Chinese Journal of Process Engineering, 2022, 22(12): 1652-1665. |
[14] | Yaqi SHI Yanjun LI Yupeng DU Wanzhong REN. Experimental study on pressure drop characteristics and minimum fluidization velocity of gas-solid micro-fluidized bed [J]. Chin. J. Process Eng., 2021, 21(4): 420-430. |
[15] | Zengxu ZHANG Yongchang WANG Yin YU Xiaoxing LIU. DEM modeling of mechanical behavior of partially sintered ceramics [J]. Chin. J. Process Eng., 2021, 21(3): 341-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||