Chin. J. Process Eng. ›› 2019, Vol. 19 ›› Issue (2): 223-234.DOI: 10.12034/j.issn.1009-606X.218233
• Reviews • Previous Articles Next Articles
Ruliang NING1,2, Xiaolong LIU2*, Tingyu ZHU1,2,3
Received:
2018-06-12
Revised:
2018-08-26
Online:
2019-04-22
Published:
2019-04-18
宁汝亮1,2, 刘霄龙2*, 朱廷钰1,2,3
通讯作者:
刘霄龙 liuxl@ipe.ac.cn
基金资助:
Ruliang NING Xiaolong LIU Tingyu ZHU. Research progress of low-temperature SCR denitration catalysts[J]. Chin. J. Process Eng., 2019, 19(2): 223-234.
宁汝亮 刘霄龙 朱廷钰. 低温SCR脱硝催化剂研究进展[J]. 过程工程学报, 2019, 19(2): 223-234.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.218233
1. Yu, S.; Jiang, N.; Zou, W.; Li, L.; Tang, C.; Dong, L. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition. Catalysis Communications 2016, 84, 75-79. 2. Qiu, Y.; Liu, B.; Du, J.; Tang, Q.; Liu, Z.; Liu, R.; Tao, C. The monolithic cordierite supported V2O5 –MoO3/TiO2 catalyst for NH3-SCR. Chemical Engineering Journal 2016, 294, 264-272. 3. Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catalysis Today 2011, 175, 147-156. 4. Fang, N.; Guo, J.; Shu, S.; Luo, H.; Chu, Y.; Li, J. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for no removal by NH3-SCR. Chemical Engineering Journal 2017, 325, 114-123. 5. Xia, Q,; Qin, Z. Investigation of selective catalytic reduction of NOx with V2O5/TiO2 as catalysts. Journal of Safety and Environmental 2004, 4, 16-18. 6. Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. Journal of hazardous materials 2011, 188, 105-109. 7. Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous mnox catalysts prepared by three methods. Catalysis Communications 2007, 8, 329-334. 8. Zhang, Y.; Zhao, X.; Xu, H.; Shen, K.; Zhou, C.; Jin, B.; Sun, K. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of no with ammonia. Journal of colloid and interface science 2011, 361, 212-218. 9. Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications 2008, 9, 2217-2220. 10. Thirupathi, B.; Smirniotis, P.G. Effect of nickel as dopant in Mn/TiO2 catalysts for the low-temperature selective reduction of NO with NH3. Catalysis Letters 2011, 141, 1399-1404. 11. Thirupathi, B.; Smirniotis, P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis 2012, 288, 74-83. 12. Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Journal of Environmental Sciences 2010, 22, 1447-1454. 13. Luo, S.; Zhou, W.; Xie, A.; Wu, F.; Yao, C.; Li, X.; Zuo, S.; Liu, T. Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2–palygorskite. Chemical Engineering Journal 2016, 286, 291-299. 14. Huang, J.; Tong, Z.; Huang, Y.; Zhang, J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental 2008, 78, 309-314. 15. Jing, G.U.O.; Caiting, L.I.; Pei, L.U.; Huafei, C.U.I.; Dunliang, P.; Qingbo, W.E.N. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature. Chinese Journal of Environmental Science 2011, 32, 2240-2246. 16. Li, Y.; Li, Y.; Wang, P.; Hu, W.; Zhang, S.; Shi, Q.; Zhan, S. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chemical Engineering Journal 2017, 330, 213-222. 17. Lian, Z.; Liu, F.; He, H.; Shi, X.; Mo, J.; Wu, Z. Manganese–niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chemical Engineering Journal 2014, 250, 390-398. 18. Zuo, J.; Chen, Z.; Wang, F.; Yu, Y.; Wang, L.; Li, X. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Industrial & Engineering Chemistry Research 2014, 53, 2647-2655. 19. Liu, Z.; Liu, Y.; Li, Y.; Su, H.; Ma, L. WO3 promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chemical Engineering Journal 2016, 283, 1044-1050. 20. Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Applied Catalysis B: Environmental 2014, 148-149, 114-122. 21. Cha, W.; Chin, S.; Park, E.; Yun, S.-T.; Jurng, J. Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal. Applied Catalysis B: Environmental 2013, 140-141, 708-715. 22. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. Applied Catalysis B: Environmental 2013, 140-141, 289-298. 23. Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. Applied Catalysis B: Environmental 2012, 127, 255-264. 24. Jiang, Y.; Gao, X.; Zhang, Y.; Wu, W.; Song, H.; Luo, Z.; Cen, K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. Journal of hazardous materials 2014, 274, 270-278. 25. Li, Q.; Yang, H.; Ma, Z.; Zhang, X. Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catalysis Communications 2012, 17, 8-12. 26. Li, Q.; Yang, H.; Qiu, F.; Zhang, X. Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. Journal of hazardous materials 2011, 192, 915-921. 27. Fan, X.; Qiu, F.; Yang, H.; Tian, W.; Hou, T.; Zhang, X. Selective catalytic reduction of NOx with ammonia over Mn–Ce–Ox/TiO2-carbon nanotube composites. Catalysis Communications 2011, 12, 1298-1301. 28. Zhang L, Zhang D, Zhang J. Design of meso-TiO2@MnOx-CeOx/CNTs with a core–shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 20, 9821-9829. 29. Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature no reduction with NH3. Catalysis Communications 2015, 62, 57-61. 30. Huang, B.; Huang, R.; Jin, D.; Ye, D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today 2007, 126, 279-283. 31. Huang, Z.; Liu, Z.; Zhang, X.; Liu, Q. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Applied Catalysis B: Environmental 2006, 63, 260-265. 32. Wu, Z.; Jin, R.; Wang, H.; Liu, Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catalysis Communications 2009, 10, 935-939. 33. Sun, D.; Liu, Q.; Liu, Z.; Gui, G.; Huang, Z. An in situ drifts study on SCR of NO with NH3 over V2O5/AC surface. Catalysis Letters 2009, 132, 122-126. 34. Jiang, B.; Deng, B.; Zhang, Z.; Wu, Z.; Tang, X.; Yao, S.; Lu, H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe–Mn/Ti catalysts. The Journal of Physical Chemistry C 2014, 118, 14866-14875. 35. Zhu, Z.P.; Liu, Z.Y.; Niu, H.X.; Liu, S.J. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures. Journal of Catalysis 1999, 187, 245-248. 36. Gálvez, M.E.; Boyano, A.; Lázaro, M.J.; Moliner, R. A study of the mechanisms of no reduction over vanadium loaded activated carbon catalysts. Chemical Engineering Journal 2008, 144, 10-20. 37. Ettireddy, P.R.; Ettireddy, N.; Boningari, T.; Pardemann, R.; Smirniotis, P.G. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies. Journal of Catalysis 2012, 292, 53-63. 38. Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Applied Catalysis B: Environmental 2011, 110, 71-80. 39. Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. Journal of Catalysis 2008, 256, 312-322. 40. Wang, Y.; Ge, C.; Zhan, L.; Li, C.; Qiao, W.; Ling, L. MnOx–CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Industrial & Engineering Chemistry Research 2012, 51, 11667-11673. 41. Tronconi, E.; Nova, I.; Ciardelli, C.; Chatterjee, D.; Weibel, M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. Journal of Catalysis 2007, 245, 1-10. 42. Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ drifts investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Applied Surface Science 2014, 313, 660-669. |
[1] | Yinhu ZHANG Zhanguo ZHANG Guangwen XU. Preparation and characterization of abrasion-resistant core-shell alumina support used in fluidized bed reactors [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 44-52. |
[2] | Jungang FAN Yue MENG Mingxin HE Jiarui HAO Wenxiu LI. Mechanism analysis of COSMO-RS screening ionic liquid to separate isopropanol-acetonitrile [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 53-61. |
[3] | Xinglong GU Yang LI Changming LI Zijun GONG Huanyuan NING Ruijian TANG Jian YU. Pilot investigation of catalytic oxidative removal of carbon monoxide from alumina industrial flue gas [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 89-100. |
[4] | Xiaoyu MA Bo LIU Gong CHEN Lihua FAN Dexi WANG. The kinetic mechanism of magnesite thermal decomposition under N2 and CO2 atmospheres [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 946-954. |
[5] | Ting YANG Yachao DONG Jian DU. Catalyst and reaction rate constant prediction methods of coupling reaction based on convolutional neural network [J]. The Chinese Journal of Process Engineering, 2024, 24(7): 833-842. |
[6] | Na ZHANG Xuefeng YIN Zichen WANG Hao LIU Minjie HUANG Hao WANG Dongxu LIANG Jianan HU. Research progress on the mechanism and influencing factors of microorganisms to increase coalbed methane production [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 636-646. |
[7] | Yaqi LIU Yan LIU Ke WU Liwen XING Dianxing LIAN Mohaoyang CHEN Jianjun JI Yongjun JI. Recent progress of heterogeneous catalysts towards selective catalytic reduction of NO by CO under oxygen-rich conditions [J]. The Chinese Journal of Process Engineering, 2024, 24(3): 284-296. |
[8] | Yu SUN Qiang DING Yudong XIA Cong LI. Chiller fault diagnosis based on combination of multiblock and self-attention TCN [J]. The Chinese Journal of Process Engineering, 2024, 24(2): 162-171. |
[9] | Junjie ZHANG Liantao JIANG Minmin LIU Xianglei MENG Guangwen XU Yanyan DIAO. Effect of additive Cu on performance of supported palladium catalyst for perfluoroolefin hydrogenation [J]. The Chinese Journal of Process Engineering, 2024, 24(2): 248-258. |
[10] | Wei XU Min ZHANG Hongdong YU Fangfang CHEN Guan PENG Jing LI. The mechanism study on flotation of ilmenorutile based on Bayan Obo niobium-bearing minerals with 1-hydroxyoctane-1,1-bisphosphonic acid as collector [J]. The Chinese Journal of Process Engineering, 2024, 24(12): 1442-1452. |
[11] | Xiaobo HONG Zaiyin HUANG Qida DING Zeying LIU Hongyan WANG Xuecai TAN Yaofeng WANG. Effect of alkali metal cation modulated supported cobalt catalyst on reductive amination [J]. The Chinese Journal of Process Engineering, 2024, 24(12): 1453-1465. |
[12] | Shuang QIN Jianjun FANG Haiyang HE Zhilian QIU Liguo PENG Shiqin DONG. The role and mechanism of dihydromyricetin in the flotation of chalcopyrite and galena [J]. The Chinese Journal of Process Engineering, 2024, 24(11): 1335-1343. |
[13] | Kunwang SONG Yewei DING Chen SHEN Haomin WU Yuanhui JI. Research progress on dissolution behavior of drugs based on the drug-excipient interaction [J]. The Chinese Journal of Process Engineering, 2024, 24(10): 1127-1136. |
[14] | Qiang YANG Gang WANG Chunshan LI. Surface modification and catalytic performance study of Cu-based carbon dioxide to methanol hydrogenation catalyst [J]. The Chinese Journal of Process Engineering, 2024, 24(10): 1166-1176. |
[15] | Youzhi DAI Ganyu ZHU Ziheng MENG Huiquan LI Chengjin XU Guoxin SUN Fang LI Lei HE Yongfang ZHANG. Research on the removal process and mechanism of aluminum/iron impurities from wet phosphoric acid through deep extraction [J]. The Chinese Journal of Process Engineering, 2024, 24(10): 1241-1250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||