The Chinese Journal of Process Engineering ›› 2021, Vol. 21 ›› Issue (7): 847-856.DOI: 10.12034/j.issn.1009-606X.220221
• Environment & Energy • Previous Articles Next Articles
Tianyuan HU1,2(), Yanlei WANG1, Feng HUO1(
), Hongyan HE1
Received:
2020-07-13
Revised:
2020-07-25
Online:
2021-07-28
Published:
2021-07-27
Contact:
Feng HUO tyhu18@ipe.ac.cn;huofeng@ipe.ac.cn
通讯作者:
霍锋 tyhu18@ipe.ac.cn;huofeng@ipe.ac.cn
作者简介:
胡天媛(1995-),女,安徽省池州市人,硕士研究生,化学工程专业,E-mail: tyhu18@ipe.ac.cn基金资助:
CLC Number:
Tianyuan HU, Yanlei WANG, Feng HUO, Hongyan HE. Molecular dynamics simulations of short-chain lithium polysulfides clustering in ionic liquids[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 847-856.
胡天媛, 王艳磊, 霍锋, 何宏艳. 短链多硫化物在离子液体中聚集行为的分子动力学模拟[J]. 过程工程学报, 2021, 21(7): 847-856.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.220221
System | Number of ILs | Concentration of Li2S/Li2S2/(mol/L) | ||||
---|---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
[PP13][TFSI]-Li2S2 | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S2 | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][TFSI]-Li2S | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][PF6]-Li2S | 800 | 184 | ||||
[PP13][DCA]-Li2S | 800 | 163 | ||||
[PP13]Br-Li2S | 800 | 176 |
Table 1 Number of molecules in the simulation systems
System | Number of ILs | Concentration of Li2S/Li2S2/(mol/L) | ||||
---|---|---|---|---|---|---|
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | ||
[PP13][TFSI]-Li2S2 | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S2 | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][TFSI]-Li2S | 800 | 49 | 98 | 147 | 196 | 245 |
[PP13][OTf]-Li2S | 800 | 37 | 75 | 112 | 149 | 186 |
[PP13][PF6]-Li2S | 800 | 184 | ||||
[PP13][DCA]-Li2S | 800 | 163 | ||||
[PP13]Br-Li2S | 800 | 176 |
RILs | Density/(g/cm3) | D+/×10-11 m2/s | D-/×10-11 m2/s |
---|---|---|---|
[PP13][TFSI] | 1.38 | 1.843±0.019 | 1.339±0.013 |
[PP13][OTf] | 1.25 | 1.177±0.012 | 0.734±0.010 |
Table 2 Densities and self-diffusion coefficients of ILs at 298 K from MD simulations
RILs | Density/(g/cm3) | D+/×10-11 m2/s | D-/×10-11 m2/s |
---|---|---|---|
[PP13][TFSI] | 1.38 | 1.843±0.019 | 1.339±0.013 |
[PP13][OTf] | 1.25 | 1.177±0.012 | 0.734±0.010 |
Angle | θ0/° | Kθ /[kcal/(mol·rad2)] |
---|---|---|
Li-S-Li[a] | 138.00 | 55.00 |
S-Li-S[b] | 60.00 | 218.00 |
Li-S-Li[b] | 98.00 | 55.00 |
Table 3 Angle parameters of Li2S and Li2S2 in this work ([a]for Li2S, [b] for Li2S2)
Angle | θ0/° | Kθ /[kcal/(mol·rad2)] |
---|---|---|
Li-S-Li[a] | 138.00 | 55.00 |
S-Li-S[b] | 60.00 | 218.00 |
Li-S-Li[b] | 98.00 | 55.00 |
Simulation | σLi/×10-1 nm | σS/×10-1 nm | εLi/(kcal/mol) | εS/(kcal/mol) | ρLi2S/(g/cm3) | ρS8/(g/cm3) |
---|---|---|---|---|---|---|
System-1[ | 2.8700 | 3.5500 | 0.0005 | 0.2500 | 1.83 | 1.71 |
System-2[ | 2.0261 | 3.5640 | 0.0183 | 0.2504 | 1.91 | 1.70 |
System-3[ | 2.1300 | 3.5500 | 0.0765 | 0.2500 | 1.73 | 1.71 |
System-4[ | 3.6000 | 3.3032 | 0.0005 | 0.2500 | 1.71 | 1.90 |
System-5[ | 3.6000 | 3.3900 | 0.0005 | 0.4070 | 1.63 | 1.98 |
System-6[ | 3.6000 | 3.3900 | 0.0183 | 0.4070 | 1.11 | 1.98 |
Table 4 Force field simulations for LJ parameters (compared with experimental densities of Li2S and S8)
Simulation | σLi/×10-1 nm | σS/×10-1 nm | εLi/(kcal/mol) | εS/(kcal/mol) | ρLi2S/(g/cm3) | ρS8/(g/cm3) |
---|---|---|---|---|---|---|
System-1[ | 2.8700 | 3.5500 | 0.0005 | 0.2500 | 1.83 | 1.71 |
System-2[ | 2.0261 | 3.5640 | 0.0183 | 0.2504 | 1.91 | 1.70 |
System-3[ | 2.1300 | 3.5500 | 0.0765 | 0.2500 | 1.73 | 1.71 |
System-4[ | 3.6000 | 3.3032 | 0.0005 | 0.2500 | 1.71 | 1.90 |
System-5[ | 3.6000 | 3.3900 | 0.0005 | 0.4070 | 1.63 | 1.98 |
System-6[ | 3.6000 | 3.3900 | 0.0183 | 0.4070 | 1.11 | 1.98 |
Anion | [PF6]- | [TFSI]- | [OTf]- | [DCA]- | Br- |
---|---|---|---|---|---|
2.91 | 2.91 | 2.41 | 2.10 | 2.65 |
Table 5 The mean size of Li2S clusters in five ILs containing anions with different coordination ability
Anion | [PF6]- | [TFSI]- | [OTf]- | [DCA]- | Br- |
---|---|---|---|---|---|
2.91 | 2.91 | 2.41 | 2.10 | 2.65 |
1 | Zhu J, Zou J L, Cheng H, et al. High energy batteries based on sulfur cathode [J]. Green Energy & Environment, 2019, 4(4): 345-359. |
2 | Pan H, Wei X, Henderson W A, et al. On the way toward understanding solution chemistry of lithium polysulfides for high energy Li-S redox flow batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500113. |
3 | Pan H L, Chen J Z, Cao R G, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth [J]. Nature Energy, 2017, 2(10): 813-820. |
4 | Vijayakumar M, Govind N, Walter E, et al. Molecular structure and stability of dissolved lithium polysulfide species [J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10923-10932. |
5 | Barchasz C, Molton F, Duboc C, et al. Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification [J]. Analytical Chemistry, 2012, 84(9): 3973-3980. |
6 | Cuisinier M, Hart C, Balasubramanian M, et al. Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes [J]. Advanced Energy Materials, 2015, 5(16): 1401801. |
7 | Zhang G, Peng H J, Zhao C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries [J]. Angewandte Chemie International Edition, 2018, 57(51): 16732-16736. |
8 | Chu H, Noh H, Kim Y J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions [J]. Nature Communications, 2019, 10(1): 188. |
9 | Wang B, Alhassan S M, Pantelides S T. Formation of large polysulfide complexes during the lithium-sulfur battery discharge [J]. Physical Review Applied, 2014, 2(3): 034004. |
10 | Yu T, Li F, Liu C Y, et al. Understanding the role of lithium sulfide clusters in lithium-sulfur batteries [J]. Journal of Materials Chemistry A, 2017, 5(19): 9293-9298. |
11 | Partovi-Azar P, Kühne T D, Kaghazchi P. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: ab initio Raman spectroscopy simulation [J]. Physical Chemistry Chemical Physics, 2015, 17(34): 22009-22014. |
12 | Gupta A, Bhargav A, Jones J P, et al. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries [J]. Chemistry of Materials, 2020, 32(5): 2070-2077. |
13 | Park C, Ronneburg A, Risse S, et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species [J]. The Journal of Physical Chemistry C, 2019, 123(16): 10167-10177. |
14 | Andersen A, Rajput N N, Han K S, et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane [J]. Chemistry of Materials, 2019, 31(7): 2308-2319. |
15 | Xiao J W, Zhou G M, Chen H T, et al. Elaboration of aggregated polysulfide phases: from molecules to large clusters and solid phases [J]. Nano Letters, 2019, 19(10): 7487-7493. |
16 | Dong K, Liu X M, Dong H F, et al. Multiscale Studies on Ionic Liquids [J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
17 | Zhang L, Dong K, Chen S M, et al. Novel ionic liquid based electrolyte for double layer capacitors with enhanced high potential stability [J]. Science China Chemistry, 2016, 59(5): 547-550. |
18 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
19 | Zhong X J, Liu Z P, Cao D P. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide [J]. The Journal of Physical Chemistry B, 2011, 115(33): 10027-10040. |
20 | Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. |
21 | Rizzo R C, Jorgensen W L. OPLS all-atom model for amines: resolution of the amine hydration problem [J]. Journal of the American Chemical Society, 1999, 121(20): 4827-4836. |
22 | Bazito F F C, Kawano Y, Torresi R M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium [J]. Electrochimica Acta, 2007, 52(23): 6427-6437. |
23 | Tokuda H, Ishii K, Susan M A B H, et al. Physicochemical properties and structures of room-temperature ionic liquids. 3. variation of cationic structures [J]. The Journal of Physical Chemistry B, 2006, 110(6): 2833-2839. |
24 | Gardas R L, Costa H F, Freire M G, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids [J]. Journal of Chemical & Engineering Data, 2008, 53(3): 805-811. |
25 | Liu Z X, Hubble D, Balbuena P B, et al. Adsorption of insoluble polysulfides Li2S x (x=1, 2) on Li2S surfaces [J]. Physical Chemistry Chemical Physics, 2015, 17(14): 9032-9039. |
26 | Zou W L, Kalescky R, Kraka E, et al. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme [J]. The Journal of Chemical Physics, 2012, 137(8): 084114. |
27 | Cornell W D, Cieplak P, Bayly C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society, 1995, 117(19): 5179-5197. |
28 | Ou X W, Yu Y Z, Wu R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator [J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542. |
29 | Islam M M, Ostadhossein A, Borodin O, et al. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials [J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3383-3393. |
30 | Pastorino C, Gamba Z. Test of a simple and flexible S8 model molecule in α-S8 crystals [J]. Chemical Physics Letters, 2000, 319(1): 20-26. |
31 | Frisch M, Trucks G, Schlegel H B, et al. Gaussian 09 [M]. Revision d. 01. Wallingford, CT: Gaussian Inc., 2009: 28. |
32 | Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations [J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. |
33 | Molinari N, Mailoa J P, Kozinsky B. Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI [J]. Chemistry of Materials, 2018, 30(18): 6298-6306. |
34 | Schmeisser M, Illner P, Puchta R, et al. Gutmann donor and acceptor numbers for ionic liquids [J]. Chemistry-A European Journal, 2012, 18(35): 10969-10982. |
[1] | Shuo BAI Hao WANG Guangwen XU Bingbing YANG Zhenye KANG Jiayao CUI Chenhao LI Qingjun CHEN Yanrong LIU. Effect of cationic properties of ionic liquids on the performance of platinum-based oxygen reduction electrocatalysts [J]. The Chinese Journal of Process Engineering, 2023, 23(4): 602-615. |
[2] | Xiaoqing YANG Yong ZHENG Qian WANG Qian YANG Yu LI Tao LI Baozeng REN. Aluminum electrodeposition and refining in ionic liquids [J]. The Chinese Journal of Process Engineering, 2023, 23(3): 396-410. |
[3] | Ruibin GAO Lixin YI Zifeng YANG Li DONG Yifan LIU Hongfan GUO Yunong LI. Catalytic conversion of the by-product bromoethanol in the process of CO2 cycloaddition [J]. The Chinese Journal of Process Engineering, 2023, 23(11): 1518-1529. |
[4] | Zhaoyang JU Mengting YU Tingyu LEI Haixiang CHENG Lanhui REN Chengsheng GE. Hydration of lanthanum ions clusters in aqueous solution: a DFT study [J]. The Chinese Journal of Process Engineering, 2022, 22(6): 764-773. |
[5] | Zheng ZHENG Hongyan HE. Analysis of development trend in field of ionic liquids based on global patent information [J]. The Chinese Journal of Process Engineering, 2021, 21(4): 383-393. |
[6] | Yanyan MA Zhengjun LI Songping ZHANG Wei CHEN Ying REN. Molecular dynamics simulation and calculation of binding free energy of a HBc-VLP [J]. Chin. J. Process Eng., 2021, 21(2): 219-229. |
[7] | Jiahui LIU Huiting LIU Guoying ZHAO Zhenyu SUN. Ionic liquids self-templating to synthesize nitrogen-doped porous carbon materials for CO2 adsorption [J]. Chin. J. Process Eng., 2020, 20(1): 108-115. |
[8] | Zheng ZHENG Feng HUO Yu WANG. Research status and developing trends of ionic liquids field based on bibliometric [J]. Chin. J. Process Eng., 2019, 19(5): 890-899. |
[9] | Haiyang XU Xiangzhan MENG Dasha XIA Lanfeng HUI Hui WANG. Extraction of glycine using functional ionic liquids [J]. Chin. J. Process Eng., 2019, 19(3): 544-552. |
[10] | Jialin LIU Ying REN Wei CHEN Hui YANG Xiujuan HE Yingcheng LI. Molecular dynamics simulations of binary mixtures of anionic/cationic surfactants at oil-water interface [J]. Chin. J. Process Eng., 2019, 19(3): 533-543. |
[11] | Wenliang WU Tao LI Hongshuai GAO Dawei SHANG Wenhui TU Binqi WANG. Efficient absorption of dichloromethane using imidazolium based ionic liquids [J]. Chin. J. Process Eng., 2019, 19(1): 173-180. |
[12] | Ying REN Ji XU. Frontiers of molecular dynamics simulations of protein systems-reexamine from the mesoscience perspective [J]. Chin. J. Process Eng., 2018, 18(6): 1126-1137. |
[13] | Zhenhua ZHANG Guoying ZHAO Dan LU Jingheng WANG Baozeng REN. Alkylation of Isobutane with Butene over Ether-functionalized Composited Chloroaluminate Ionic Liquids [J]. Chin. J. Process Eng., 2017, 17(5): 1016-1022. |
[14] | ZHOU Hua-cong LI Wei GAO Hong-shuai JIA Lian-wei XU Peng LIU Hui-zhou. Effects of Imidazole- and Pyridine-based Ionic Liquids on Catalysis Performance of Immobilized Penicillin Acylase [J]. , 2010, 10(6): 1181-1186. |
[15] | ZHANG Zhi-da CHEN Ji-ping LI Chang-ping YAN Pei-fang WANG An-jie Urs Welz-Biermann. Microwave-assisted Extraction of Lactone from Ligusticum Chuanxiong Hort Using Ionic Liquid [J]. , 2010, 10(3): 498-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||