[1]李是良, 张炜, 朱慧, 等. 水冲压发动机用金属燃料的研究进展 [D]. 长沙:国防科技大学, 2006: 69-73.
Li S L, Zhang W, Zhu H, et al. The Research Development of the Hydroreactive Metal Fuel used for Water-ramjet Engine [D]. Changsha: University of Defense Technology, 2006: 69-73.
[2]丁小雨, 金星, 张鹏. 压强对含硼富燃料推进剂一次燃烧产物的影响 [J]. 火炸药学报, 2015, 38(4): 90-94.
Ding X Y, Jin X, Zhang P. Influences of Pressure on the Primary Combustion Products of the Boron based Fuel rich Propellant [J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 90-94.
[3]刘元敏, 张研, 刘林林, 等. RDX对含硼富燃料推进剂一次燃烧产物组分影响的计算研究 [J]. 火炸药学报, 2017, 40(1): 81-85.
Liu Y M, Zhang Y, Liu L L, et al. Calculation Study on Effect of RDX on the Composition of Primary Combustion Products for Boron-based Fuel-rich Propellants [J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 81-85.
[4] Puri P. Multi Scale Modeling of Ignition and Combustion of Micro and Nano Aluminum Particles
[D]. Commonwealth of Pennsylvania: The Pennsylvania State University, 2008: 1304-1577.
[5] Summerfield M, Price E W, Luca L D. Nonsteady Burning and Combustion Stability of Solid Propellants [M]. Washington: AIAA, 1992: 59-109.
[6] Kubota N, Kuwahara T. Combustion of Energetic Fuel for Ducted Rockets (I) [J]. Propellants Explosives Pyrotechnics, 2010, 16(2): 51-54.
[7] Mitsuno M, Kuwahara T, Kosaka K, et al. Combustion of metallized propellants for ducted rockets [C]//23rd Joint Propulsion Conference. California: American Institute of Aeronautics and Astronautics, 1987: 1724-1730.
[8] 范红杰, 王宁飞, 樊学忠, 等. 含硼富燃料推进剂点火特性 [J]. 推进技术, 2008, 29(1): 102-104.
Fan H J, Wang N F, Fan X Z, et al. Ignition Characteristics of Boron-based Fuel-rich Propellants [J]. Journal of Propulsion Technology, 2008, 29(1): 102-104.
[9]邓哲. Al/AP粉末推进剂点火燃烧及层流火焰传播模型研究 [D]. 西安: 西北工业大学, 2016: 51-126.
Deng Z. Research on Al/AP Powder Propellant Ignition Combustion and Laminar Flame Spread Modeling [D] Xian: Northwestern Polytechnical University, 2016: 51-126.
[10]李凡, 朱宝忠, 堵同宽, 等. 含不同粒度铝粉的铝/冰燃料的燃烧特性 [J]. 过程工程学报, 2015, 15(5): 831-836.
Li F, Zhu B Z, Du T K, et al. Combustion Characteristics of Aluminum/Ice Fuel with Different Particle Sizes of Aluminum Powder [J]. The Chinese Journal of Process Engineering, 2015, 15(5): 831-836.
[11]王启昌, 朱宝忠, 孙运兰, 等. 高氯酸铵包覆纳米铝粉在CO2气氛中的热反应特性及点火燃烧特性 [J]. 过程工程学报, 2017, 17(2): 271-277.
Wang Q C, Zhu B Z, Sun Y L, et al. Thermal Reaction Characteristics and Ignition Combustion Characteristics of Nano-aluminum Powder Coated with Ammonium Perchlorate in Carbon Dioxide [J]. The Chinese Journal of Process Engineering, 2017, 17(2): 271-277.
[12]Wang H M,Chen X,Zhao C,et al. Study on Ignition and Combustion Characteristics of NEPE Propellant under Laser Irradiation [J]. Journal of Propulsion Technology, 2015, 36(8): 1262-1267.
[13] Risha G A, Huang Y, Yetter R, et al. Experimental Investigation of Aluminum Particle Dust Cloud Combustion [C]//43rd Aerospace Sciences Meeting and Exhibition. Nevada: American Institute of Aeronautics and Astronautics, 2005: 739-752.
[14] Lomba R, Halter F, Chauveau C, et al. Experimental Characterization of Combustion Regimes for Micron-sized Aluminum Powders [C]//53rd AIAA Aerospace Sciences Meeting. Florida: American Institute of Aeronautics and Astronautics, 2015: 0925-0939.
[15] 吴婉娥, 毛根旺, 王英红, 等. AP含量及粒度级配对含硼富燃推进剂压强指数的影响 [J]. 固体火箭技术, 2007, 30(4): 332-334.
Wu W E, Mao G W, Wang Y H, et al. Effects of AP Content and Granularity Gradation on Pressure Exponent of Boron-based Fuel-rich Propellant [J]. Journal of Solid Rocket Technology, 2007, 30(4): 332-334.
[16]成红刚, 陈雄, 周长省, 等. 铝颗粒燃烧特性研究进展 [J]. 兵器装备工程学报, 2010, 31(3): 84-88.
[17] Firmansyah D A, Sullivan K, Lee K S, et al. Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles [J]. The Journal of Physical Chemistry C, 2012, 116(1): 404-411.
[18] Yang H, Lee J, Kim K, et al. Simplified Model for Single Aluminum Particle Combustion [C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. Florida: American Institute of Aeronautics and Astronautics, 2009: 636-644.
[19] Rozenband V I, Vaganova N I. A Strength Model of Heterogeneous Ignition of Metal Particles [J]. Combustion & Flame, 1992, 88(1): 113-118.
[20] Lu K T, Yang T M,Li J S,et al. Study on the Burning Characteristics of AP/Al/HTPB Composite Solid Propellant Containing Nano-Sized Ferric Oxide Powder [J]. Combustion Science and Technology, 2012, 184(12): 2100-2116.
[21] Sippel T R, Son S F, Groven L J. Aluminum Agglomeration Reduction in a Composite Propellant Using Tailored Al/PTFE Particles [J]. Combustion & Flame, 2014, 161(1): 311-321.
[22] Gao M, Guo X Y, Zou M S, et al. Studies on Combustion of Aluminum-Magnesium Alloy Hydro-Reactive Metal Fuel [J]. Journal of Propulsion Technology, 2015, 36(4): 629-634.
[23] 张照鹏, 褚忠信, 李应坤. 峰高与峰面积统计量表示岩心黏土矿物相对含量的差异 [J]. 海洋科学, 2016, 40(12): 107-113.
Zhang Z P, Chu Z X, Li Y K. Difference Between Peak-height and Peak-area Methods in Extracting Relative Contents of Core Clay Minerals [J]. Marine Sciences, 2016, 40(12): 107-113.
[24]吴秋, 陈林泉, 王云霞, 等. 含硼固冲发动机补燃室内凝相产物燃烧效率测试方法 [J]. 固体火箭技术, 2014, 37(1): 134-138.
Wu Q, Chen L Q, Wang Y X, et al. Test Method of Combustion Efficiency for Condensed Products of Boron-based Propellant in Secondary Combustion Chamber of Solid Ducted Rocket [J]. Journal of Solid Rocket Technology, 2014, 37(1): 134-138.
[25] 胡艳峰. 总烃峰面积积分法与峰高法的线性比较 [J]. 分析试验室, 2008, 27(b12): 399-400. |