The Chinese Journal of Process Engineering ›› 2021, Vol. 21 ›› Issue (7): 752-761.DOI: 10.12034/j.issn.1009-606X.220208
• Review • Previous Articles Next Articles
Juan WANG1,2(), Haohan XU1,2, Kai XIE1,2, Haiyan YU1,2
Received:
2020-07-01
Revised:
2020-08-26
Online:
2021-07-28
Published:
2021-07-27
王娟1,2(), 徐皓晗1,2, 解凯1,2, 余海艳1,2
作者简介:
王娟(1977-),女,辽宁省丹东市人,博士,副教授,化工过程机械,E-mail: wangjuan@cup.edu.cn.
CLC Number:
Juan WANG, Haohan XU, Kai XIE, Haiyan YU. Research progress on kinetic models of ethane pyrolysis[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 752-761.
王娟, 徐皓晗, 解凯, 余海艳. 乙烷裂解制乙烯过程反应动力学模型的研究进展[J]. 过程工程学报, 2021, 21(7): 752-761.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.220208
Furnace type | Gas furnace | Liquid furnace |
---|---|---|
Cracking raw materials | Ethane propane | Naphtha ethane propane |
Radiant section furnace tube form | Four tubes or six tubes | Two tubes |
Dilution steam heating coil | No | Yes |
Raw material preheating two-stage coil | No | Yes |
Quench heat exchanger | Level 1, Level 2, Level 3 | Level 1 |
Burner fuel | Hydrogen-rich fuel (hydrogen content greater than 60%) | Methane hydrogen (20% hydrogen) fuel |
Table 1 Comparison of cracking furnace configuration[16]
Furnace type | Gas furnace | Liquid furnace |
---|---|---|
Cracking raw materials | Ethane propane | Naphtha ethane propane |
Radiant section furnace tube form | Four tubes or six tubes | Two tubes |
Dilution steam heating coil | No | Yes |
Raw material preheating two-stage coil | No | Yes |
Quench heat exchanger | Level 1, Level 2, Level 3 | Level 1 |
Burner fuel | Hydrogen-rich fuel (hydrogen content greater than 60%) | Methane hydrogen (20% hydrogen) fuel |
Feedstocks | H2 | CH4 | C2H4 | C3H8 | 1,3-butadiene | C4H10+C4H8 | Benzene |
---|---|---|---|---|---|---|---|
Ethane | 8.82 | 6.27 | 77.73 | 2.76 | 1.81 | 1.81 | 0.87 |
Propane | 2.27 | 27.43 | 42.01 | 16.82 | 3.01 | 3.01 | 2.47 |
N-butane | 1.57 | 22.12 | 40.00 | 17.27 | 3.50 | 3.50 | 3.02 |
Naphtha | 1.56 | 17.20 | 33.62 | 15.53 | 4.56 | 4.56 | 6.74 |
Atmospheric diesel | 0.94 | 11.19 | 25.92 | 16.15 | 4.56 | 4.56 | 6.03 |
Vacuum residue | 0.78 | 8.75 | 20.49 | 14.07 | 5.38 | 5.38 | 3.73 |
Table 2 Product distribution of different cracking raw materials (wt%)[17]
Feedstocks | H2 | CH4 | C2H4 | C3H8 | 1,3-butadiene | C4H10+C4H8 | Benzene |
---|---|---|---|---|---|---|---|
Ethane | 8.82 | 6.27 | 77.73 | 2.76 | 1.81 | 1.81 | 0.87 |
Propane | 2.27 | 27.43 | 42.01 | 16.82 | 3.01 | 3.01 | 2.47 |
N-butane | 1.57 | 22.12 | 40.00 | 17.27 | 3.50 | 3.50 | 3.02 |
Naphtha | 1.56 | 17.20 | 33.62 | 15.53 | 4.56 | 4.56 | 6.74 |
Atmospheric diesel | 0.94 | 11.19 | 25.92 | 16.15 | 4.56 | 4.56 | 6.03 |
Vacuum residue | 0.78 | 8.75 | 20.49 | 14.07 | 5.38 | 5.38 | 3.73 |
Project | Ethane | Propane | Butane | Light naphtha | Light diesel oil | Vacuum gas oil |
---|---|---|---|---|---|---|
Investment/USD million | 413.5 | 508.5 | 516.2 | 554.1 | 644.4 | 668.1 |
Relative investment | 1.00 | 1.25 | 1.25 | 1.34 | 1.56 | 1.62 |
Cost/(USD/t) | 241.9 | 201.5 | 201.8 | 355.3 | 397.3 | 363.5 |
Relative energy consumption | 1.00 | 1.44 | 1.50 | 1.53 | 1.72 | 2.04 |
Table 3 Comparison of ethylene plant investment, cost and relative energy consumption with different cracking raw materials[18]
Project | Ethane | Propane | Butane | Light naphtha | Light diesel oil | Vacuum gas oil |
---|---|---|---|---|---|---|
Investment/USD million | 413.5 | 508.5 | 516.2 | 554.1 | 644.4 | 668.1 |
Relative investment | 1.00 | 1.25 | 1.25 | 1.34 | 1.56 | 1.62 |
Cost/(USD/t) | 241.9 | 201.5 | 201.8 | 355.3 | 397.3 | 363.5 |
Relative energy consumption | 1.00 | 1.44 | 1.50 | 1.53 | 1.72 | 2.04 |
Reaction stage | Primitive reaction | A/ [m3/(mol∙s)] | E/(kcal/mol) |
---|---|---|---|
Chain initiation | C2H6→2CH3* | 6.3×1016 | 86.0 |
Chain growth | CH3*+C2H6→CH4+C2H5* | 2.5×1011 | 10.8 |
C2H5*→C2H4+H* | 5.3×1014 | 40.8 | |
H*+C2H6→C2H5*+H2 | 3.8×1012 | 7.0 | |
Chain termination | H*+C2H5*→C2H6 | 7.0×1013 | 0.0 |
Table 4 Radical mechanics of ethane cracking[29]
Reaction stage | Primitive reaction | A/ [m3/(mol∙s)] | E/(kcal/mol) |
---|---|---|---|
Chain initiation | C2H6→2CH3* | 6.3×1016 | 86.0 |
Chain growth | CH3*+C2H6→CH4+C2H5* | 2.5×1011 | 10.8 |
C2H5*→C2H4+H* | 5.3×1014 | 40.8 | |
H*+C2H6→C2H5*+H2 | 3.8×1012 | 7.0 | |
Chain termination | H*+C2H5*→C2H6 | 7.0×1013 | 0.0 |
Froment | Zou | ||||
---|---|---|---|---|---|
Cracking reaction system | Ethane | Propane | Ethane-propane | Ethane-propane | |
Number of reactions | 49 | 80 | 17 | 18 | |
Number of species | Molecule | 11 9 | 11 11 | 6 6 | 6 5 |
Free radicals | |||||
Number of parameters | 81 | 134 | 32 | 34 | |
Pseudo-steady state hypothesis | No | No | No | No | |
Valuation method | Try method | Try method | Taken from the separate pyrolysis system | Improved simplex algorithm |
Table 5 Comparison of various free radical mechanism models[33]
Froment | Zou | ||||
---|---|---|---|---|---|
Cracking reaction system | Ethane | Propane | Ethane-propane | Ethane-propane | |
Number of reactions | 49 | 80 | 17 | 18 | |
Number of species | Molecule | 11 9 | 11 11 | 6 6 | 6 5 |
Free radicals | |||||
Number of parameters | 81 | 134 | 32 | 34 | |
Pseudo-steady state hypothesis | No | No | No | No | |
Valuation method | Try method | Try method | Taken from the separate pyrolysis system | Improved simplex algorithm |
No. | Reaction | ΔH/(kcal/mol) |
---|---|---|
1 | C2H6↔C2H4+H2 | 3.257×107 |
2 | 2C2H6→C3H8+CH4 | -2.761×106 |
3 | C3H6↔C2H2+CH4 | 3.188×107 |
4 | C2H2+C2H4 →C4H6 | -4.173×106 |
5 | C2H6+C2H4→C3H6+CH4 | -5.489×106 |
Table 6 Reaction scheme for ethane cracking[46]
No. | Reaction | ΔH/(kcal/mol) |
---|---|---|
1 | C2H6↔C2H4+H2 | 3.257×107 |
2 | 2C2H6→C3H8+CH4 | -2.761×106 |
3 | C3H6↔C2H2+CH4 | 3.188×107 |
4 | C2H2+C2H4 →C4H6 | -4.173×106 |
5 | C2H6+C2H4→C3H6+CH4 | -5.489×106 |
No. | Reaction | ΔH/(kcal/mol) |
---|---|---|
1 | C2H6↔C2H4+H2 | 3.257×107 |
2 | 2C2H6→C3H8+CH4 | -2.761×106 |
3 | C3H8→C3H6+H2 | 2.984×107 |
4 | C3H8→C2H4+CH4 | 1.974×107 |
5 | C3H6↔C2H2+CH4 | 3.188×107 |
6 | C2H2+C2H4→C4H6 | -4.173×106 |
7 | 2C2H6→C2H4+2CH4 | 1.698×106 |
8 | C2H6+C2H4→C3H6+CH4 | -5.489×106 |
Table 7 Reaction scheme for ethane propane cracking[46]
No. | Reaction | ΔH/(kcal/mol) |
---|---|---|
1 | C2H6↔C2H4+H2 | 3.257×107 |
2 | 2C2H6→C3H8+CH4 | -2.761×106 |
3 | C3H8→C3H6+H2 | 2.984×107 |
4 | C3H8→C2H4+CH4 | 1.974×107 |
5 | C3H6↔C2H2+CH4 | 3.188×107 |
6 | C2H2+C2H4→C4H6 | -4.173×106 |
7 | 2C2H6→C2H4+2CH4 | 1.698×106 |
8 | C2H6+C2H4→C3H6+CH4 | -5.489×106 |
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Kinetic model | X+S→XS XS→C+S+nH2 | X+S↔XS XS→C+S+nH2 | X+S→XS XS→C+S+nH2 CS→eS+fC+gCS | X+S↔XS XS→C+S+nH2 CS→eS+fC+gCS |
Model accuracy | Poor | Poor | More accurate | Accurate |
Table 8 Kinetic model of catalytic mechanism[66]
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Kinetic model | X+S→XS XS→C+S+nH2 | X+S↔XS XS→C+S+nH2 | X+S→XS XS→C+S+nH2 CS→eS+fC+gCS | X+S↔XS XS→C+S+nH2 CS→eS+fC+gCS |
Model accuracy | Poor | Poor | More accurate | Accurate |
1 | Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: catalytic cracking review [J]. Fuel, 2016, 173: 285-297. |
2 | 赵文明. 对我国乙烯原料路线多元化发展现状及趋势探讨 [J]. 化学工业, 2018, 36(2): 1-13. |
Zhao W M. The raw materials diversification status and trends of China ethylene industry [J]. Chemical Industry, 2018, 36(2): 1-13. | |
3 | 陈晓昀. 国内乙烷裂解制乙烯项目应关注问题探讨 [J]. 乙烯工业, 2019, 31(2): 6-10, 5. |
Chen X J. Discussion on issues concerning domestic ethane cracking to ethylene project [J]. Ethylene Industry, 2019, 31(2): 6-10, 5. | |
4 | 徐海丰. 2018年世界乙烯行业发展状况与趋势 [J]. 国际石油经济, 2018, 27(1): 82-88. |
Xu H F. 2018 world ethylene industry development status and trends [J]. International Petroleum Economics, 2018, 27(1): 82-88. | |
5 | 何盛宝, 王红秋, 王春娇. 中国进口乙烷裂解制乙烯项目前景分析 [J]. 化工进展, 2018, 37(9): 6-10. |
He S B, Wang H Q, Wang C J. Prospect analysis of import ethane cracking projects in China [J]. Chemical Industry and Engineering Progress, 2018, 37(9): 6-10. | |
6 | 谭捷.我国乙烯的供需现状及发展前景 [J]. 精细与专用化学品, 2019, 27(10): 18-20. |
Tan J. Supply and demand situation and development prospect of ethylene in China [J]. Fine and Specialty Chemical, 2019, 27(10): 18-20. | |
7 | Rosli M N, Aziz N. Steady state modelling of steam cracking furnace radiant section using Aspen plus [J]. Materials Today: Proceedings, 2018, 5(10): 21780-21789. |
8 | Zheng S, Zhang X Y, Qi C B, et al. Modeling of heat transfer and pyrolysis reactions in ethylene cracking furnace based on 3-D combustion monitoring [J]. International Journal of Thermal Sciences, 2015, 94: 28-36. |
9 | 詹宜泽, 詹宇. 乙烷制乙烯产业链现状及发展前景 [J]. 化工管理, 2018, (19): 9-10. |
Zhan Y Z, Zhan Y. Status and development prospects of ethane to ethylene industry chain [J]. Chemical Management, 2018, (19): 9-10. | |
10 | 黄格省, 师晓玉, 张彦, 等. 国内外乙烷裂解制乙烯发展现状及思考 [J]. 现代化工, 2018, 38(10): 1-5. |
Huang G S, Shi X Y, Zhang Y, et al. Situation of ethylene production via ethane cracking and considerations [J]. Modern Chemical Industry, 2018, 38(10): 1-5. | |
11 | 王子宗, 何细藕. 乙烯装置裂解技术进展及其国产化历程 [J]. 化工进展, 2014, 33(1): 1-9. |
Wang Z Z, He X O. Progress of cracking technology of ethylene plant and its development in China [J]. Chemical Industry and Engineering Progress, 2014, 33(1): 1-9. | |
12 | Sadrameli S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review [J]. Fuel, 2015, 140: 102-115. |
13 | Hernández A Y. A model for the prediction of olefin production and coke deposition during thermal cracking of light hydrocarbons [D]. Medellín: Universidad Nacional de Colombia, 2012: 3-4. |
14 | 张凡. 乙烯裂解炉内燃烧、流动、传热及裂解反应特性数值模拟研究 [D]. 北京: 中国石油大学(北京), 2017: 4-5. |
Zhang F. Numerical simulation of combustion, flow, heat transfer and cracking reaction in cracking furnace [D]. Beijing: China University of Petroleum (Beijing), 2017: 4-5. | |
15 | 许江, 马艳捷, 程中克, 等. USC裂解炉出口温度、炉管构型对循环乙烷裂解性能的影响 [J]. 现代化工, 2018, 38(10): 215-218. |
Xu J, Ma Y J, Cheng Z K, et al. Influences of outlet temperature and furnace tube configuration to circulating pyrolysis property of ethane in USC cracker [J]. Modern Chemical Industry, 2018, 38(10): 215-218. | |
16 | 马嘉, 李春燕, 辛江, 等. 轻质原料裂解制乙烯路径分析 [J]. 化学工业, 2018, 36(5): 29-33. |
Ma J, Li C Y, Xin J, et al. Analysis of light feedstock for ethylene cracker [J]. Chemical Industry, 2018, 36(5): 29-33. | |
17 | 黄风林. 石油天然气化工工艺 [M]. 北京: 中国石化出版社, 2011: 103. |
Huang F L. Oil and gas chemical process [M]. Beijing: China Petrochemical Press, 2011: 103. | |
18 | 温翯, 郭晓莉, 苟尕莲, 等. 乙烷裂解制乙烯的工艺研究进展 [J]. 2020, 40(5): 47-51. |
Wen H, Guo X L, Gou G L, et al. Process research and development of ethane cracking to ethylene [J]. 2020, 40(5): 47-51. | |
19 | 姜维. 乙烷、丙烷及其混合物相互作用机理研究 [D]. 大庆: 东北石油大学, 2014: 2. |
Jiang W. Mechanism of interaction in ethane, propane and their mixtures [D]. Daqing: Northeast Petroleum University, 2014: 2. | |
20 | Fakhroleslam M, Sadrameli S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review III: process modeling and simulation [J]. Fuel, 2019, 252: 553-566. |
21 | Fang Z, Qiu T, Zhou W G. Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace [J]. Chinese Journal of Chemical Engineering, 2017, 25(8): 1091-1100. |
22 | 罗殿英. 烃类分子裂解产物分布规律的数值模拟研究 [D]. 大庆: 东北石油大学, 2011: 5-6. |
Luo D Y. A study of the numerical simulation on the distribution of the hydrocarbon molecule's pyrolysis products [D]. Daqing: Northeast Petroleum University, 2011: 5-6. | |
23 | 张红梅, 顾萍萍, 南子龙, 等. 蒸汽热裂解反应动力学模型的研究进展 [J]. 化工生产与技术, 2012, 19(2): 34-36. |
Zhang H M, Gu P P, Nan Z L, et al. Research progress on reaction kinetics model of steam pyrolysis [J]. Chemical Production and Technology, 2012, 19(2): 34-36. | |
24 | Zhuang X, Yu J. Modeling ethylene and propylene yield for cracking furnace based on a kind of new recurrent neural network [C]//Proceedings of the 4th International Conference on Control and Automation, 2003: 718-722. |
25 | Rosli M N, Aziz N. Ethane steam cracking inferential model development using artificial neural network [J]. Materials Today: Proceedings, 2019, 19: 1451-1458. |
26 | 张利军, 张永刚, 王国清. 石脑油裂解反应模型研究及应用进展 [J]. 化工进展, 2010, 29(8): 40-46. |
Zhang L J, Zhang Y G, Wang G Q. Progress and prospect in modeling and simulation of naphtha cracking [J]. Chemical Industry and Engineering Progress, 2010, 29(8): 40-46. | |
27 | 张凯, 李奇安, 李悦. 裂解反应动力学模型研究概况 [J]. 当代化工, 2012, (7): 97-101, 105. |
Zhang K, Li Q A, Li Y. Research survey of pyrolysis kinetics model [J]. Contemporary Chemical Industry, 2012, (7): 97-101, 105. | |
28 | Rice F O. The thermal decomposition of organic compounds from the standpoint of free radicals. IV. the dehydrogenation of paraffin hydrogenations and the strength of the C-C bond [J]. Journal of the American Chemical Society, 1933, 55: 4245-4247. |
29 | 李蔚, 张兆斌, 周丛, 等. 裂解炉管内自由基反应模型的研究进展 [J]. 乙烯工业, 2010, 22(2): 1-6. |
Li W, Zhang Z B, Zhou C, et al. Research progress of free radical reaction model in cracking furnace tube [J]. Ethylene Industry, 2010, 22(2): 1-6. | |
30 | Sundaram K M, Froment G F. Modeling of thermal cracking kinetics. 3. radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures [J]. Industrial & Engineering Chemistry Fundamentals, 1978, 17(3): 174-182. |
31 | Tarafder A, Lee B C S, Ray A K, et al. Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm [J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 124-141. |
32 | Froment G F, Vandesteene B, Sumedha O. Selectivities and yields in cocracking ethane and propane [J]. Oil and Gas Journal, 1979, 77(16): 87-90. |
33 | 邹晋, 娄强昆, 邹仁鋆. 脉冲微型反应装置上乙烷-丙烷混合裂解反应动力学的研究 [J]. 中国科学化学, 1985, 15(11): 967-974. |
Zhou J, Lou Q K, Zou R Y. Study on kinetics of mixed cracking reaction of ethane-propane on pulse micro reactor [J]. Scientia Sinica Chimica, 1985, 15(11): 967-974. | |
34 | Cowperthwaite E V. Mathematical model for ethane pyrolysis in an industrial furnace [D]. Ontario: Queen's University, 2014: 7-8. |
35 | Geem K M V, Hudebine D, Reyniers M F, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices [J]. Computers & Chemical Engineering, 2007, 31(9): 1020-1034. |
36 | Van Geem K M, Zajdlik R, Reynier M F, et al. Dimensional analysis for scaling up and down steam cracking coils [J]. Chemical Engineering Journal, 2007, 134: 3-10. |
37 | 李晓艳. 重整拔头油的综合利用研究 [D]. 上海: 华东理工大学, 2016: 39-40. |
Li X Y. Study on comprehensive utilization of reforming topped oil [D]. Shanghai: East China University of Science and Technology, 2016: 39-40. | |
38 | Zhang Y, Qian F, Zhang Y, et al. Impact of flue gas radiative properties and burner geometry in furnace simulations [J]. AIChE Journal, 2015, 61(3): 936-954. |
39 | Hu G H, Zhang Y, Du W, et al. Zone method based coupled simulation of industrial steam cracking furnaces [J]. Energy, 2019, 172: 1098-1116. |
40 | Zhang Y. Computational fluid dynamics-based steam cracking furnace optimization using feedstock flow distribution [J]. AIChE Journal, 2017, 63(7): 3199-3213. |
41 | Hu G H, Schietekat C M, Zhang Y, et al. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453-2465. |
42 | Yuan B F, Li J L, Du W L, et al. Study on co-cracking performance of different hydrocarbon mixture in a steam pyrolysis furnace [J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1252-1262. |
43 | 钱锋, 胡贵华, 杜文莉, 等. 用于工业乙烯蒸汽裂解炉设计验证和优化的耦合建模方法: CN103310123A [P]. 2013-09-18. |
Qian F, Hu G H, Du W L, et al. Coupling modeling method for design verification and optimization of industrial ethylene steam cracking furnace: CN103310123A [P]. 2013-09-18. | |
44 | 张红梅, 徐春明, 高金森. 管式炉裂解制乙烯反应动力学模型的研究进展 [C]//第九届全国化学工艺学术年会论文集. 北京:中国石化出版社, 2005: 563-567. |
Zhang H M, Xu C M, Gao J S. Research progress of reaction kinetics model for tube furnace pyrolysis to ethylene [C]//Proceedings of the 9th National Annual Conference on Chemical Technology. Beijing: China Petrochemical Press, 2005: 563-567. | |
45 | 魏巍. SRT-Ⅳ(HC)型裂解炉中HVGO裂解过程的模型化与模拟 [D]. 北京: 北京化工大学, 2006: 15. |
Wei W. Modeling and simulation for HVGO pyrolysis process in SRT-IV(HC) cracking furnace [D]. Beijing: Beijing University of Chemical Technology, 2006: 15. | |
46 | Sundaram K M, Froment G F. Modeling of thermal cracking kinetics. 1. thermal cracking of ethane, propane and their mixtures [J]. Chemical Engineering Science, 1977, 32(6): 601-608. |
47 | Gujarathi A M, Dipesh S P, Pravar A, et al. Simulation and analysis of ethane cracking process [C]//Proceedings of International Symposium & 62nd Annual Session of IIChE in association with International Partners (CHEMCON-2009), 2009: 27-30. |
48 | Yancheshmeh M S S, Haghighi S S, Gholipour M R, et al. Modeling of ethane pyrolysis process: a study on effects of steam and carbon dioxide on ethylene and hydrogen productions [J]. Chemical Engineering Journal, 2013, 215/216(17): 550-560. |
49 | Ranjan P, Kannan P, Shoaibi A A, et al. Modeling of ethane thermal cracking kinetics in a pyrocracker [J]. Chemical Engineering & Technology, 2012, 35(6): 1093-1097. |
50 | Karimi H, Cowperthwaite E V, Olayiwola B, et al. Modelling of heat transfer and pyrolysis reactions in an industrial ethylene cracking furnace [J]. Canadian Journal of Chemical Engineering, 2018, 96: 33-48. |
51 | Feli Z, Darvishi A, Bakhtyari A, et al. Investigation of propane addition to the feed stream of a commercial ethane thermal cracker as supplementary feedstock [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 1-13. |
52 | 张朝环. 乙烯裂解炉内燃烧与裂解反应过程数值模拟 [D]. 天津: 天津大学, 2008: 44-58. |
Zhang C H. Numerical simulation on the combustion and cracking reaction of ethylene cracking furnace [D]. Tianjin: Tianjin University, 2008: 44-58. | |
53 | 陈娟娟. 乙烯裂解炉综合数值模拟 [D]. 天津: 天津大学, 2009: 16-31. |
Chen J J. Comprehensive Numerical simulation of ethylene pyrolyzer [D]. Tianjin: Tianjin University, 2009: 16-31. | |
54 | 高晓丹. 乙烯裂解炉的模拟和优化方法研究 [D]. 北京: 清华大学, 2008: 84-91. |
Gao X D. Study on the simulation and optimization method for ethylene cracking furnaces [D]. Beijing: Tsinghua University, 2008: 84-91. | |
55 | 王小强, 田亮, 程中克, 等. 乙烯裂解炉模拟优化软件现状及其应用 [J]. 石油与天然气化工, 2019, 48(6): 44-48. |
Wang X Q, Tian L, Cheng Z K, et al. Present situation and application of simulation and optimization software for ethylene cracking furnace [J]. Chemical Engineering of Oil and Gas, 2019, 48(6): 44-48. | |
56 | Hay G, Rasouli G, Carbognani-Arambarri L, et al. Reduce coke formation and save operating costs with optimization of DMDS into ethane cracking furnaces [J]. Hydrocarbon Processing, 2017, 96(2): 49-52. |
57 | Jambor B, Hájeková E. Formation of coke deposits and coke inhibition methods during steam cracking [J]. Petroleum and Coal, 2015, 57(2): 143-153. |
58 | Broutin P, Ropital F, Reyniers M F, et al. Anticoking coatings for high temperature petrochemical reactors [J]. Oil & Gas Science and Technology, 1999, 54(3): 375-385. |
59 | Amir B, Behrouz M, Vahid P. Mathematical modeling of ethane cracking furnace of olefin plant with coke formation approach [J]. International Journal of Chemical Reactor Engineering, 2018, 16(9): 1-14. |
60 | Schietekat C M, Sarris S A, Reyniers P A, et al. Catalytic coating for reduced coke formation in steam cracking reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(39): 9525-9535. |
61 | Mobarakia M, Afshangb B, Rahimpour M R, et al. Effect of cracking feedstock on carburization mechanism of cracking furnace tubes [J]. Engineering Failure Analysis, 2020, 109(1): 1-11. |
62 | 孙孝儒, 沈利民. 乙烯裂解炉管结焦机理及其防护措施研究进展 [J]. 腐蚀科学与防护技术, 2017, 29(5): 575-580. |
Sun X R, Shen L M. Research progress of coking mechanism and prevention measures for ethylene cracking furnace tubes [J]. Corrosion Science and Protection Technology, 2017, 29(5): 575-580. | |
63 | Albright L F, Marek J C. Coke formation during pyrolysis: roles of residence time, reactor geometry, and time of operation [J]. Industrial & Engineering Chemistry Research, 1988, 27(5): 743-751. |
64 | 张莹莹. 乙烷裂解炉烧焦过程安全区的计算与优化操作的模拟 [D]. 天津: 天津大学, 2009: 1. |
Zhang Y Y. Determination of safe conditions and simulation of optimum operations for decoking of ethane pyrolysis furnace [D]. Tianjin: Tianjin University, 2009: 1. | |
65 | Karimi H, Olayiwola B, Farag H, et al. Modelling coke formation in an industrial ethane cracking furnace for ethylene production [J]. The Canadian Journal of Chemical Engineering, 2020, 98(1): 158-171. |
66 | Mohamadalizadeh A, Towfighi J, Karimzadeh R. Modeling of catalytic coke formation in thermal cracking reactors [J]. Journal of Analytical & Applied Pyrolysis, 2008, 82(1): 134-139. |
67 | Sundaram K M, Froment G F, Van Damme P S. Coke deposition in the thermal cracking of ethane [J]. AIChE Journal, 1981, 27(6): 946-951. |
68 | Wauters S, Marin G B. Computer generation of a network of elementary steps for coke formation during the thermal cracking of hydrocarbons [J]. Chemical Engineering Journal, 2001, 82(1): 267-279. |
69 | Wauters S, Marin G B. Kinetic modeling of coke formation during steam cracking [J]. Industrial & Engineering Chemistry Research, 2002, 41: 2379-2391. |
[1] | Kangkang FENG Xin GENG Qinghui LOU Yu WANG Huajun HU Xiangjian SHI Cuimei BO. Data driven modeling of energy consumption and product quality in ethylene glycol distillation process [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 142-149. |
[2] | Zhuohang JIN Xiaoxia HAN Fengyi LIU. Multi-objective parameter identification method for methanation reaction kinetics combined with process simulation [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 34-43. |
[3] | Yinhu ZHANG Zhanguo ZHANG Guangwen XU. Preparation and characterization of abrasion-resistant core-shell alumina support used in fluidized bed reactors [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 44-52. |
[4] | Mingjun QIU Xiaomin LI Hua SHANG Jiangfeng YANG Jinping LI. Process simulation of pressure swing adsorption technology optimization based on low concentration methane enrichment [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 884-893. |
[5] | Na ZHANG Xuefeng YIN Zichen WANG Hao LIU Minjie HUANG Hao WANG Dongxu LIANG Jianan HU. Research progress on the mechanism and influencing factors of microorganisms to increase coalbed methane production [J]. The Chinese Journal of Process Engineering, 2024, 24(6): 636-646. |
[6] | Jinfeng SI Ming GONG Xiaojiao JI Xing LIU Xiaoxun MA. Numerical simulation of non-oxidative methane dehydroaromatization reactor based on CPFD method [J]. The Chinese Journal of Process Engineering, 2024, 24(1): 17-26. |
[7] | Shuo ZHANG Yu GUAN Yuanjiang YOU Junrong YUE Shihong PEI Yanbin CUI Jiao LIU Guangwen XU. Intrinsic kinetics of CO methanation over spherical Ni/Al2O3 catalyst with high attrition resistance [J]. The Chinese Journal of Process Engineering, 2024, 24(1): 107-116. |
[8] | Feiqiong ZHANG Xuefeng YIN Jianan HU Wei HE Jing WANG Pengfei DAI Zichen WANG Na ZHANG. Research progress of coalbed methane combustion deoxidation technology [J]. The Chinese Journal of Process Engineering, 2023, 23(7): 1013-1023. |
[9] | Mengru LIU Fulin HUANG Junjie SUN Xiuyu LIU Qingming ZHU Gang TANG. Preparation and properties of piperazine pyrophosphate based flame retardant rigid polyurethane foam [J]. The Chinese Journal of Process Engineering, 2023, 23(4): 571-579. |
[10] | Yan WANG Chengwei YANG Dongying YUAN Yuhong ZHANG Sijian QU. Application progress of coal petrology in coking coal blending and coal blending optimization technology [J]. The Chinese Journal of Process Engineering, 2023, 23(1): 25-37. |
[11] | Fan YI Peng HE Junya CAO Yan CAO Liguo WANG Jiaqiang CHEN Huiquan LI. Study on adsorptive separation property of CaY zeolite for ethylene glycol and 1,2-butanediol [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 448-457. |
[12] | Xitao YUAN Kelin HUANG Liguo WANG Peng HE Yan CAO Shuang XU Jiaqiang CHEN Huiquan LI. Catalytic carbonylation of hexanediamine with diethyl carbonate to synthesis hexamethylene dicarbamate [J]. The Chinese Journal of Process Engineering, 2022, 22(3): 393-402. |
[13] | Bingyu FAN Xinliang CHEN Li YANG Shang GAO Yongjian XIE Zhenfeng WANG Ping WANG Jin LIU. The influence of the structure of the interfacial compatibilizer on the interfacial state and performance of the PLA/PP blends [J]. The Chinese Journal of Process Engineering, 2022, 22(3): 413-420. |
[14] | Yazhuo ZHANG Jinhui ZHAN. Adsorption and reaction of CH3Cl on both ZnO(001) and ZnO(100) surface based on the first principles calculation [J]. The Chinese Journal of Process Engineering, 2022, 22(2): 240-248. |
[15] | Junbo LIU Xin GUO Shuoxin ZHANG Bang WU. Comparison of hydrogen production from methane steam reforming in different microreactor configurations [J]. The Chinese Journal of Process Engineering, 2022, 22(12): 1729-1738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||