Chin. J. Process Eng. ›› 2018, Vol. 18 ›› Issue (3): 509-516.DOI: 10.12034/j.issn.1009-606X.217360
• Reaction & Separation • Previous Articles Next Articles
Shoulai YIN, Baozhong ZHU*, Yunlan SUN, Zhaohui ZI, Cheng CHEN, Guobo LI, Tianyu XU
Received:
2017-10-16
Revised:
2017-12-25
Online:
2018-06-22
Published:
2018-06-06
尹寿来, 朱宝忠*, 孙运兰, 訾朝辉, 陈 诚, 李国波, 徐天宇
通讯作者:
朱宝忠 baozhongzhu@163.com
基金资助:
Shoulai YIN Baozhong ZHU Yunlan SUN Zhaohui ZI Cheng CHEN Guobo LI Tianyu XU. Low-temperature Selective Catalytic Reduction of NOx over Ce-modified Fe2O3/AC Catalysts[J]. Chin. J. Process Eng., 2018, 18(3): 509-516.
尹寿来 朱宝忠 孙运兰 訾朝辉 陈诚 李国波 徐天宇. Ce改性Fe2O3/AC催化剂低温SCR脱硝性能[J]. 过程工程学报, 2018, 18(3): 509-516.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jproeng.com/EN/10.12034/j.issn.1009-606X.217360
[1] Qi G, Yang R T. Low-temperature Selective Catalytic Reduction of NO with NH3 over Iron and Manganese Oxides Supported on Titania [J]. Appl. Catal. B Environ., 2003, 44: 217?225. [2] 彭富昌. 钒系脱硝催化剂的研究现状及发展趋势[J]. 当代化工, 2013, 42: 1562-1564. Peng F C. Research status and prospect of vanadium catalysts for De-NOx [J]. Contemporary Chemical Industry, 2013, 42: 1562?1564. [3] 李金虎, 张先龙, 陈天虎, 等. 凹凸棒石负载锰氧化物低温选择性催化还原催化剂的表征及对氨的吸脱附[J]. 催化学报, 2010, 31: 454?460. Li J H, Zhang X L, Chen T H, et al. Characterization and ammonia adsorption-desorption of palygorskite supported manganese oxide as a low-temperature selective catalytic reduction catalyst [J]. Chinese Journal of Catalysis, 2010, 31: 454?460. [4] 王学海, 李勇, 刘忠生, 等. 锅炉烟气脱硝工业侧线试验 [J]. 当代化工, 2013, 42: 1485?1488. Wang X H, Li Y, Liu Z S, et al. Industrial side-line experiment of flue gas denitrification [J]. Contemporary Chemical Industry, 2013, 42: 1485?1488. [5] Pasel J,Kβner P,Montanari B,et al.Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3 [J]. Appl. Catal. B Environ., 1998, 18: 199?213. [6] 陈九玉, 朱宝忠, 堵同宽, 等. Co改性Fe2O3/AC催化剂低温SCR脱硝性能 [J]. 有色金属工程, 2017, 7: 99-102. Chen J Y, Zhu B Z, Du T K, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Co modified Fe2O3/AC catalysts [J]. Nonferrous Metals Engineering, 2017, 7: 99?102. [7] 谢国勇, 刘振宇, 刘有智, 等. 用CuO/γ-Al2O3催化剂同时脱除烟气中的SO2和NO [J]. 催化学报, 2004, 25: 33?38. Xie G Y, Liu Z Y, Liu Y Z, et al. Simultaneous Removal of SO2 and NO from Flue Gas Using CuO//γ-Al2O3 Catalyst [J], Chinese Journal of Catalysis, 2004, 25: 33?38. [8] Iwamoto M, Yoda Y, Yamazoe N, et al. Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides [J]. ChemInform., 1978, 10: 2564?2570. [9] 杨青. Ce改性铁锰复合氧化物低温选择性催化还原NOx研究 [D]. 广州: 华南理工大学, 2011. Yang Q, Low temperature selective catalytic reduction of NOx over Ce modified FeMnOx catlysts [D]. Guangzhou: South China University of Technology, 2011. [10] 郭东旭. 新型铁铈钛催化剂SCR脱硝性能及反应动力学研究 [D]. 济南:山东大学, 2013. Guo D X, Performance and kinetics of the selective catalytic reduction of NOx over novel Fe-Ce-Ti/TiO2 [D]. Jinan: Shandong University, 2013. [11] 束韫. 铁铈蜂窝金属丝网催化剂用于选择催化还原NOx的研究 [D]. 大连: 大连理工大学, 2013. Shu Y, Selective catalytic reduction of NOx over Fe?Ce/wire-mesh honeycomb catalyst [D]. Dalian: Dalian University of Technology, 2013. [12] Mangun C L, Debarr J A, Economy J. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers[J]. Carbon, 2001, 39: 1689?1696. [13] Yu Y M, Guo R L, Li C H. Flue gas desulfurization and denitrification performance of the semi-coke adsorbents [J]. J. Fuel Chem. Technol., 2011, 39: 385?389. [14] Tsuji K, Shiraishi I. Combined desuifurization, denitrification and reduction of air toxics using activated coke: l. Activity of activated coke [J]. Fuel, 1997, 76: 549?553. [15] 王晓波, 归柯庭. 铁基催化剂低温脱硝性能研究 [J]. 工程热物理学报, 2013, 34: 1671?1674. Wang X B, Gui K T, Low-temperature selective catalytic reduction of NO with NH3 over iron based catalysts [J]. Journal of Engineering Thermophysics, 2013, 34: 1671?1674. [16] Liu Z, Wang A, Wang X, et al. Ir-C xerogels synthesized by sol-gel method for NO reduction [J]. Catal. Today, 2008, 137: 162?166. [17] Maldonado J F, Moreno C, Rivera J, et al. Catalytic graphitization of carbon aerogels by transition metals [J]. Langmuir, 2000, 16: 4367-4373. [18] Xiang G, Liu S, Yang Z, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO [J]. J. Hazard. Mater., 2011, 188: 58?66. [19] 刘炜, 童志权, 罗婕. Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能 [J]. 环境科学学报, 2006, 26: 1240?1245. Liu W, Tong Z Q, Luo J. Low-temperature selective catalytic reduction of NO with NH3 over Ce-Mn/TiO2 catalyst [J]. Acta Scientiae Circumstantiae, 2006, 26: 1240?1245. [20] 钟标城, 周广英, 王文辉, 等. Fe掺杂对MnOx催化剂结构性质及低温SCR反应机制的影响 [J]. 环境科学学报, 2011, 10: 2091?2101. Zhong B C, Zhou G Y, Wang W H, et al. The effects of Fe substitution on the structure of MnOx catalyst and reaction pathway for low temperature SCR [J]. Acta Scientiae Circumstantiae, 2006, 26: 1240?1245. [21] 姜水燕. Fe基分子筛催化剂NH3-SCR性能研究 [D]. 杭州:浙江大学, 2015. Jiang H Y, Investigation on catalytic performance of Fe-based zeolite catalysts in NH3-SCR [D]. Hangzhou: Zhejiang University. 2015. [22] Devadas M, Krocher O, Elsener M, et al. Characterization and catalytic investigation of Fe?ZSM5 for urea-SCR [J]. Catal. Today, 2007, 119: 137?-144. [23] Shen B, Wang F, Liu T. Homogeneous MnOx?CeO2 pellets prepared by a one step hydrolysis process for low-temperature NH3-SCR [J]. Powder Technol., 2014, 253: 152?157. [24] Gongshin Q, Ralph T Y. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx?CeO2 catalyst [J]. J. Catal., 2003, 217: 434?441. [25] Sun Y, Guo Y, Su W, et al. Low-temperature selective catalytic reduction of NO with NH3 over Fe-Ce-Ox catalysts [J]. Trans. Tianjin Univ., 2017, 23: 35?42. [26] Zhu L, Zhang L, Qu H, et al. A study on chemisorbed oxygen and reaction process of Fe?CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR [J]. J. Mol. Catal. A: Chem., 2015, 409: 207?215. [27] Schindler M, Hawthorne F C, Freund M S, et al. XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O1s spectrum [J]. Geochim. Cosmochim. Ac., 2009, 73: 2471-2487. [28] Wu Z B, Jin R B, Liu Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low?temperature [J]. Cataly. Commun., 2008, 9: 2217?2220. [29] Brink R W V D, Booneveld S, Pels J R, et al. Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite [J]. Appl. Catal. B Environ., 2001, 32: 73?81. [30] Chen B, Liu N, Liu X, et al. Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: from experiment to theory [J]. Catal. Today, 2011, 175: 245?255. [31] Mauvezin M, Delahay G, Cop B, et al. Identification of iron species in Fe?BEA: influence of the exchange level [J]. The J. Phys. Chem. B, 2001, 105: 928?935. [32] Park J H, Choung J H, Nam I S, et al. N2O decomposition over wet? and solid?exchanged Fe-ZSM-5 catalysts [J]. Appl. Catal. B Environ., 2008, 78: 342?-354. [33] Liu J, Zhao Z, Wang J, et al. The highly active catalysts of nanometric CeO2?supported cobalt oxides for soot combustion [J]. Appl. Catal. B Environ., 2008, 84: 185?195. [34] 黄增斌, 李翠清, 王振, 等. 不同分子筛负载锰铈催化剂的低温NH3-SCR 脱硝性能 [J]. 燃料化学学报, 2016, 44:1388-1393. Huang Z B, Li C Q, Wang Z, et al. Performance of Mn?Ce catalysts supported on different zeolites in the NH3?SCR of NOx. Journal of Fuel Chemistry and Technology, 2016, 44: 1388?1393. [35] Shen B, Ma H, He C, et al. Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts [J]. Fuel Process. Technol., 2014, 119: 121-129. [36] Sultana A, Sasaki M, Hamada H. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia [J]. Catal. Today, 2012, 185: 284-289. [37] 庄柯, 裘婧, 许波连, 等. NO选择性催化还原Ce?Mn?Ti?O催化剂铈组分助催化作用 [J]. 物理化学学报, 2012, 28: 681?685. Zhuang K, Qiu J, Xu B L, et al. Promotional Effect of Cerium Oxide on the Catalytic Properties of Ce?Mn?Ti?O Catalysts for Selective Catalytic Reduction of NO [J]. Acta Physico-Chimica Sinica, 2012, 28: 681?685. |
[1] | Baocheng JIANG Tao XIAO Songsong WANG Xueyi GUO Qinmeng WANG. Research on influence of oxygen lance area position on flow characteristics of large copper smelting oxygen bottom blowing furnace [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 150-158. |
[2] | Weibin SHI Shanshan LONG Xiaogang YANG Hui HUANG Nian DUAN. Bubble coalescence model considering bubble shape variations and bubble-induced turbulence [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 169-178. |
[3] | Jiajun LIU Guofan ZHANG. Research on behavior and mechanism of flotation entrainment of microfine-grained serpentine [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 190-200. |
[4] | Lei ZHAO Yue SUN Yulong HU Zheyu FANG Xing JIN Songlin RAN. Research progress of Si3N4/BN composite ceramics [J]. The Chinese Journal of Process Engineering, 2025, 25(2): 111-128. |
[5] | Yinhu ZHANG Zhanguo ZHANG Guangwen XU. Preparation and characterization of abrasion-resistant core-shell alumina support used in fluidized bed reactors [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 44-52. |
[6] | Jungang FAN Yue MENG Mingxin HE Jiarui HAO Wenxiu LI. Mechanism analysis of COSMO-RS screening ionic liquid to separate isopropanol-acetonitrile [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 53-61. |
[7] | Yan WU Jianyu JIAO Fengmei BAI Hongwei ZHOU Gang ZHAO Jun XUE Guangwen ZHENG. Evolution of cementite in high strength pearlitic steel wires during drawing [J]. The Chinese Journal of Process Engineering, 2025, 25(1): 80-88. |
[8] | Rui ZHANG Qingbo YU Yidi LOU. Effect of flue gas recirculation rate on heating process of cement rotary kiln [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1027-1035. |
[9] | Nan TU Chiyu WANG Xiaoqun LIU Jiachen LIU Jiabin FANG. Numerical simulation of influence of multi-baffles on particle residence time distribution in cross-flow bubbling beds [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1047-1057. |
[10] | Tianyang WANG Chao CHEN Xin TAO Jia WANG Mengjiao GENG Jintao SONG Linbo LI Jinping FAN Wanming LIN. Impact of slag layer on macroscopic flow inside tundish and velocity near slag-steel interface [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1058-1069. |
[11] | Feng LIU Cheng LU. Study on stability of SiO/C slurry and semi-dry homogenization process [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1080-1087. |
[12] | Ranfeng HE Yu YANG Xianbing SONG Xiaolian LI Ziqiang WANG Peng WANG Yunshan WANG. Ensifer adhaerens CAS22-03 fermentation process optimization and enzymatic preparation of D-p-HPG [J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1096-1105. |
[13] | Jianyi CHEN Min XU Cang TONG Caifeng HUANG Xiulan HUAI. CFD-DEM-based simulation of Ca(OH)2/CaO thermochemical energy storage process in a novel baffled moving bed reactor [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 894-903. |
[14] | Jingsong CUI Bo JIA Xuesheng LI Yaru WANG Haihang LI Haining WANG Qifu BAO. Research on CNN-LSTM coupling model for chemical process early warning [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 937-945. |
[15] | Chengfang LI Aimin LIU Kaiyu XIE Detian LI Chengdan HE Jin WANG Yongjun WANG Zhongning SHI. Visualization electrolysis of NEU-1 lunar soil simulant in KF-AlF3 electrolyte at low-temperature [J]. The Chinese Journal of Process Engineering, 2024, 24(8): 972-981. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||