[1] CAO Jianwei.Research on the Key Technology of CZ silion Crystal Growth Furnace[D].Zhejiang University, 2010.
[2]YI Yingmin, ZHANG Tong, LIU Dan.Numerical simulation of melt in the crucible of Czochralski silicon single crystal[J].Journal of Xi’an University of Technology, 2014, 30(04):409-414
[3] JIA Chenxia, JING Chengjun, GAO Hui, TSUKADA Takao.Global analysis of heat transfer in Cz single crystal growth furnace (3): effect of free surface shape[J]. Journal of Engineering Thermophysics, 2009, 30(2):302-304.
[4]Derby J J, Brown R A.On the dynamics of Czochralski crystal growth[J].Journal of Crystal Growth, 1987, 83(1):137-151
[5]Abdollahi J, Dubljevic S.Crystal radius and temperature regulation in Czochralski crystallization process[J].Journal of Cell Biology, 1997, 139(5):1325-1335
[6]Tavakoli M H.Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth[J].Journal of Crystal Growth, 2008, 310(12):3107-3112
[7]Fang H, Tian J, Zhang Q, et al.Study of melt convection and interface shape during sapphire crystal growth by Czochralski method[J].International Journal of Heat \& Mass Transfer, 2012, 55(s 25–26):8003-8009
[8]Rijnsdorp J E.Advanced process control : WHarmon Ray[J].Automatica, 1982, 18(4):505-505
[9]Park H M, Cho D H.The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems[J].Chemical Engineering Science, 1996, 51(1):81-98
[10]Park H M, Yoon T Y.Solution of inverse radiation problems using the Karhunen-Loeve Galerkin procedure[J].Journal of Quantitative Spectroscopy \& Radiative Transfer, 2001, 68(5):489-506
[11]Zhang D, Lu Z.An efficient,high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions[J].Journal of Computational Physics, 2004, 194(2):773-794
[12] Izadi M, Dubljevic S.Computation of empirical eigenfunctions of parabolic PDEs with time-varying domain[C]// American Control Conference.2013:4357-4362.
[13]Izadi M, Dubljevic S.Order-reduction of parabolic PDEs with time-varying domain using empirical eigenfunctions[J].Aiche Journal, 2013, 59(59):4357-4362
[14]Abdollahi J, Izadi M, Dubljevic S.Temperature distribution reconstruction in Czochralski crystal growth process[J].Aiche Journal, 2014, 60(8):2839-2852
[15] Sirovich L.Turbulence and the Dynamics of Coherent Structures: I, II and III[C]. Quat Appl Math. 1986:561-571.
[16] R Fletcher, R M Reeves. Function minimization by conjugate gradients[J].The Computer Journal,1964,7(2):149-154.
[17] Park H M, M W Lee.Boundary control of the Navier-Stokes equation by empirical reduction of modes[J].Computer Methods in Applied Mechanics and Engineering, 2000, 188(1-3):165-186
|