过程工程学报 ›› 2021, Vol. 21 ›› Issue (7): 741-751.DOI: 10.12034/j.issn.1009-606X.220179
张豪1(), 叶国华1,2(), 陈子杨2, 谢禹1, 左琪2
收稿日期:
2020-06-10
修回日期:
2020-08-24
出版日期:
2021-07-28
发布日期:
2021-07-27
通讯作者:
叶国华 m13629917490@163.com;ghye581@163.com
作者简介:
张豪(1994-),男,新疆维吾尔自治区乌鲁木齐市人,硕士研究生,矿物加工工程,E-mail: m13629917490@163.com基金资助:
Hao ZHANG1(), Guohua YE1,2(), Ziyang CHEN2, Yu XIE1, Qi ZUO2
Received:
2020-06-10
Revised:
2020-08-24
Online:
2021-07-28
Published:
2021-07-27
Contact:
Guohua YE m13629917490@163.com;ghye581@163.com
摘要: 协同萃取作为溶剂萃取法的分支被广泛研究。对于协同萃取的机理探索,必须阐明协同效应产生的微观原因,并给出微观与宏观性质的联系,因此从分子的微观结构和内部运动认识协同萃取以及影响因素尤为重要。本工作重点综述了萃取剂之间、萃取剂与金属离子之间的协同作用机理以及影响其作用因素的研究进展,指出协同萃取的本质是氢键的形成导致萃取剂的结构与能量发生变化,进而提高了萃取效果。协同萃取主要包括两个方面,一是更容易生成稳定的萃合物从而提高萃取效率,二是利用萃取剂之间的差异提高分离性能。萃取系统的pH、不同萃取剂的组合及比例、萃取剂的浓度、中性磷类萃取剂的添加等诸多因素显著影响协同萃取过程,且各种因素之间存在交互。运用模拟计算进行理论性预测,通过实验进行验证,并且辅以现代分析化学方法进行表征,是今后化工研究领域行之有效的方法之一,理论推广实际,从而更好地指导生产。
中图分类号:
张豪, 叶国华, 陈子杨, 谢禹, 左琪. 典型有机磷类萃取剂在溶剂萃取中协同萃取的研究进展[J]. 过程工程学报, 2021, 21(7): 741-751.
Hao ZHANG, Guohua YE, Ziyang CHEN, Yu XIE, Qi ZUO. Research progress on synergistic extraction of typical organophosphorus extractant in solvent extraction[J]. The Chinese Journal of Process Engineering, 2021, 21(7): 741-751.
Bond shape | P204 single molecule | P204 dimer | P507 single molecule | P507 dimer | Cyanex272 single molecule | Cyanex272 dimer |
---|---|---|---|---|---|---|
P=O | 0.1485 | 0.1608 | 0.1493 | 0.1622 | 0.1501 | 0.1633 |
P-O | 0.1600 | 0.1697 | 0.1616 | 0.1721 | 0.1653 | 0.1696 |
O-H | 0.0968 | 0.1038 | 0.0968 | 0.1038 | 0.0972 | 0.1046 |
表1 三种酸性萃取剂与其二聚体主要键长比较(单位:nm)[25]
Table 1 Comparison of main bond lengths of three acid extractants in dimers (Unit: nm)[25]
Bond shape | P204 single molecule | P204 dimer | P507 single molecule | P507 dimer | Cyanex272 single molecule | Cyanex272 dimer |
---|---|---|---|---|---|---|
P=O | 0.1485 | 0.1608 | 0.1493 | 0.1622 | 0.1501 | 0.1633 |
P-O | 0.1600 | 0.1697 | 0.1616 | 0.1721 | 0.1653 | 0.1696 |
O-H | 0.0968 | 0.1038 | 0.0968 | 0.1038 | 0.0972 | 0.1046 |
Atom | P204 single molecule charge | P204 dimer charge | P507 single molecule charge | P507 dimer charge | Cyanex272 single molecule charge | Cyanex272 dimer charge |
---|---|---|---|---|---|---|
P | 2.259 | 1.501 | 1.904 | 1.428 | 1.430 | 1.225 |
O (hydroxyl) | -0.761 | -0.742 | -0.731 | -0.724 | -0.681 | -0.764 |
O (phosphoryl group) | -0.738 | -0.744 | -0.705 | -0.775 | -0.684 | -0.746 |
H | 0.385 | 0.490 | 0.383 | 0.441 | 0.382 | 0.486 |
表2 三种酸性萃取剂与其二聚体主要中心原子电荷比较(单位:C)[25]
Table 2 Comparison of the charge of three acid extractants at the main center of dimer (Unit: C)[25]
Atom | P204 single molecule charge | P204 dimer charge | P507 single molecule charge | P507 dimer charge | Cyanex272 single molecule charge | Cyanex272 dimer charge |
---|---|---|---|---|---|---|
P | 2.259 | 1.501 | 1.904 | 1.428 | 1.430 | 1.225 |
O (hydroxyl) | -0.761 | -0.742 | -0.731 | -0.724 | -0.681 | -0.764 |
O (phosphoryl group) | -0.738 | -0.744 | -0.705 | -0.775 | -0.684 | -0.746 |
H | 0.385 | 0.490 | 0.383 | 0.441 | 0.382 | 0.486 |
Extractant | Energy | ΔE |
---|---|---|
P204-P204 | -6683328.863 | -418.801 |
P204 monome | -3341455.030 | |
P507-P507 | -6288551.753 | -687.303 |
P507 monome | -3143932.228 | |
Cyanex-Cyanex | -5996893.000 | -104152.000 |
Cyanex monome | -2946370.000 |
表3 三种酸性萃取剂与其二聚体能量比较(单位:kJ/mol)[25]
Table 3 Energy comparison of three acid extractants and dimers(Unit: kJ/mol)[25]
Extractant | Energy | ΔE |
---|---|---|
P204-P204 | -6683328.863 | -418.801 |
P204 monome | -3341455.030 | |
P507-P507 | -6288551.753 | -687.303 |
P507 monome | -3143932.228 | |
Cyanex-Cyanex | -5996893.000 | -104152.000 |
Cyanex monome | -2946370.000 |
Orbital | P204 dimer | P507 dimer | Cyanex dimer |
---|---|---|---|
HOMO-1 | -7.983 | -7.508 | -7.006 |
HOMO | -7.920 | -7.486 | 6.836 |
LUMO | -0.756 | 0.152 | 1.006 |
LUMO+1 | -0.103 | 0.713 | 1.494 |
ΔEHOMO-LUMO | 7.164 | 7.638 | 7.842 |
表4 三种酸性萃取剂二聚体分子前线轨道与能量比较(单位:eV)[25]
Table 4 Comparison of molecular frontier orbitals and energies of dimers of three acid extractants(Unit: eV)[25]
Orbital | P204 dimer | P507 dimer | Cyanex dimer |
---|---|---|---|
HOMO-1 | -7.983 | -7.508 | -7.006 |
HOMO | -7.920 | -7.486 | 6.836 |
LUMO | -0.756 | 0.152 | 1.006 |
LUMO+1 | -0.103 | 0.713 | 1.494 |
ΔEHOMO-LUMO | 7.164 | 7.638 | 7.842 |
1 | Ye S S, Jing Y, Wang Y D, et al. Recovery of rare earths from spent FCC catalysts by solvent extraction using saponified 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) [J]. Journal of Rare Earths, 2017, 35(7): 716-722. |
2 | Thi H N, Lee M S. Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchanged [J]. Hydrometallurgy, 2014, 147/148: 142-147. |
3 | Weterings K, Janssen J. Recovery of uranium, vanadium, yttrium and rare earths from phosphoric acid by a precipitation method [J]. Hydrometallurgy, 1985, 15(2): 173-190. |
4 | Talles Barcelos D C, Meuris G C D S, Melissa G A V. Recovery of rare-earth metals from aqueous solutions by bio/adsorption using non-conventional materials:a review with recent studies and promising approaches in column applications [J]. Journal of Rare Earths, 2019, 38(4): 339-355. |
5 | Li W, Zhang Y M, Liu T, et al. Comparison of ion exchange and solvent extraction in recovering vanadium from sulfuric acid leach solutions of stone coal [J]. Hydrometallurgy, 2013, 131/132: 1-7. |
6 | Zhang W S, Zhu Z W, Cheng C Y. A literature review of titanium metallurgical processes [J]. Hydrometallurgy, 2011, 108(3/4): 177-188. |
7 | Yun C Y, Lee C Y, Lee G G, et al. Modeling and simulation of multicomponent solvent extraction processes to purify rare earth metals [J]. Hydrometallurgy, 2016, 159: 40-45. |
8 | Dariush A, Larachi F. Behavior of bifunctional phosphonium-based ionic liquids in solvent extraction of rare earth elements-quantum chemical study [J]. Journal of Molecular Liquids, 2018, 263(1): 96-108. |
9 | Jing Y, Chen J, Su W R, et al. Deep insights into the solution and interface behaviors in heavy rare earth extraction: a molecular dynamics study [J]. Journal of Molecular Liquids, 2019, 296(15): 26-41. |
10 | Xu D D, Zeb S, Cui Y, et al. Recovery of rare earths from nitric acid leach solutions of phosphate ores using solvent extraction with a new amide extractant (TODGA) [J]. Hydrometallurgy, 2018, 180: 132-138. |
11 | Wei H Q, Li Y L, Kuang S T, et al. Separation of trivalent rare earths from chloride medium using solvent extraction with heptylaminomethyl phosphonic acid 2-ethylhexyl ester (HEHHAP) [J]. Hydrometallurgy, 2019, 188: 14-21. |
12 | Chen X Y, Chen Q, Guo F L, et al. Extraction behaviors of rare-earths in the mixed sulfur-phosphorus acid leaching solutions of scheelite [J]. Hydrometallurgy, 2018, 175: 326-332. |
13 | Wu S X, Wang L S, Zhang P, et al. Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA [J]. Hydrometallurgy, 2018, 175: 109-116. |
14 | Tavakoli M R, Dreisinger D B. Separation of vanadium from iron by solvent extraction using acidic and neutral organophosporus extractants [J]. Hydrometallurgy, 2014, 141: 17-23. |
15 | Kuang S T, Zhang Z F, Li Y L, et al. Synergistic extraction and separation of rare earths from chloride medium by the mixture of HEHAPP and D2EHPA [J]. Hydrometallurgy, 2017, 174: 78-83. |
16 | Cai Z L, Feng Y L, Zhou Y Z, et al. Selective separation and extraction of vanadium(V) over manganese(II) from co-leaching solution of roasted stone coal and pyrolusite using solvent extraction [J]. JOM, 2013, 65(11): 29-36. |
17 | Li X B, Wei C, Wu J, et al. Thermodynamics and mechanism of vanadium(IV) extraction from sulphate medium with D2EHPA, EHEHPA and CYANEX272 in kerosene [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(2): 461-466. |
18 | Deng Z G, Wei C, Fan G, et al. Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1): s118-s122. |
19 | Wang H J, Feng Y L, Li H L, et al. Recovery of vanadium from acid leaching solutions of spent oil hydrotreating catalyst using solvent extraction with D2EHPA (P204) [J]. Hydrometallurgy, 2020, 195: 144-154. |
20 | Amesh P, Suneesh A S, Venkatesan K A. Preparation and ion exchange studies of cesium and strontium on sodium iron titanate [J]. Separation and Purification Technology, 2019, 238(1): 63-93. |
21 | Liu Z S, Huang J, Zhang Y M. Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336 [J]. Separation and Purification Technology, 2020, 249(15): 147-148. |
22 | Chen K H, He Y, Srinivasakannan C, et al. Characterization of the interaction of rare earth elements with P507 in a microfluidic extraction system using spectroscopic analysis [J]. Chemical Engineering Journal, 2019, 56(15): 453-460. |
23 | Cieszynska A, Wisniwski M. Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos®IL 104 [J]. Hydrometallurgy, 2012, 113/114: 79-85. |
24 | Kumari A, Panda R, Lee J Y, et al. Extraction of rare earth metals (REMs) from chloride medium by organo-metallic complexation using D2EHPA [J]. Separation and Purification Technology, 2019, 227(15): 56-80. |
25 | 魏昶. 有机磷类萃取剂结构-性能关系及萃取钒基础研究 [R]. 国家自然科学基金结题报告. 昆明: 昆明理工大学. 2015: 10-20. |
Wei C. Study on the relationship between the structure and properties of organophosphorus extractants and the extraction of vanadium [R]. National Natural Science Foundation of China. Kunming: Kunming University of Science and Technology. 2015: 10-20. | |
26 | Zhang Y, Zhang T G, Lü G Z, et al. Synergistic extraction of vanadium(IV) in sulfuric acid media using a mixture of D2EHPA and EHEHPA [J]. Hydrometallurgy, 2016, 166: 87-93. |
27 | Liu Y, Jeon H S, Lee M S. Solvent extraction of Pr and Nd from chloride solutions using ternary extractant system of Cyanex 272, Alamine 336 and TBP [J]. Journal of Industrial and Engineering Chemistry, 2015, 31(25): 74-79. |
28 | Atefeh A, Fereshteh R, Ataollah B. Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP [J]. Separation and Purification Technology, 2016,171(17): 197-205. |
29 | Cristian T, Yannick M, Dogistein E, et al. Recovery of critical materials from mine tailings: a comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems [J]. Journal of Cleaner Production, 2019, 218(1): 425-437. |
30 | Zhang F Y, Wu W Y, Bian X, et al. Synergistic extraction and separation of lanthanum(III) and cerium(III) using a mixture of 2-ethylhexylphosphonic mono-2-ethylhexyl ester and di-2-ethylhexyl phosphoric acid in the presence of two complexing agents containing lactic acid and citric acid [J]. Hydrometallurgy, 2014, 149: 238-243. |
31 | Mellah A, Benachour D. The solvent extraction of zinc and cadmium from phosphoric acid solution by di-2-ethyl hexyl phosphoric acid in kerosene diluent [J]. Chemical Engineering & Processing: Process Intensification, 2006, 45(8): 684-690. |
32 | Jin Y, Ma Y J, Weng Y L, et al. Solvent extraction of Fe3+ from the hydrochloric acid route phosphoric acid by D2EHPA in kerosene [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3446-3452. |
33 | Zhang F Y, Dai J J, Wang A, et al. Investigation of the synergistic extraction behavior between cerium(III) and two acidic organophosphorus extractants using FT-IR, NMR and mass spectrometry [J]. Inorganica Chimica Acta, 2017, 466(1): 333-342. |
34 | Xiong P, Zhang Y M, Huang J, et al. High-efficient and selective extraction of vanadium(V) with N235-P507 synergistic extraction system [J]. Chemical Engineering Research and Design, 2017, 120: 284-290. |
35 | Wang L Y, Lee M S. Recovery of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with a mixture of Cyanex 301 and TBP [J]. Journal of Molecular Liquids, 2017, 240: 345-350. |
36 | Shi D, Cui B, Li L J, et al. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP-kerosene-FeCl3 system [J]. Separation and Purification Technology, 2019, 211(18): 303-309. |
37 | Hong T, Liu M B, Ma J, et al. Selective recovery of Rhenium from industrial leach solutions by synergistic solvent extraction [J]. Separation and Purification Technology, 2019, 236(1): 62-81. |
38 | Mishra R K, Rout P C, Sarangi K, et al. A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923 [J]. Hydrometallurgy, 2010, 104(2): 298-303. |
39 | Li X B, Wei C, Deng Z G, et al. Selective solvent extraction of vanadium over iron from a stone coal/black shale acid leach solution by D2EHPA/TBP [J]. Hydrometallurgy, 2011, 105(3/4): 359-363. |
40 | Fatmehsari D H, Darvishi D, Etemadi S, et al. Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction: a thermodynamic and empirical approach [J]. Hydrometallurgy, 2009, 98(1/2): 143-147. |
41 | He Y, Guo S H, Chen K H, et al. Application of microchemical technology in mass transfer behavior contrastive research of rare earth extraction [J]. Microchemical Journal, 2019, 150: 41-80. |
42 | Zhang G Z, Chen D S, Zhao W, et al. A novel synergistic extraction method for recovering vanadium (V) from high-acidity chloride leaching liquor [J]. Separation and Purification Technology, 2016, 165(13): 166-172. |
43 | El-Nadi Y A, Awwad N S, Nayl A A. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst [J]. International Journal of Mineral Processing, 2009, 92(1): 115-120. |
44 | Nayl A A, Aly H F. Solvent extraction of V(V) and Cr(III) from acidic leach liquors of ilmenite using Aliquat 336 [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 4183-4191. |
45 | Alireza C, Morteza S A, Eskandar K A, et al. Thermodynamics of vanadium (V) solvent extraction by mixture of D2EHPA and TBP [J]. International Journal of Mineral Processing, 2015, 138(10): 49-54. |
46 | Zhou H Y, Dong Y M, Wang Y B, et al. Recovery of Th(IV) from leaching solutions of rare earth residues using a synergistic solvent extraction system consisting of Cyanex 572 and n-octyl diphenyl phosphate (ODP) [J]. Hydrometallurgy, 2019, 183: 186-192. |
47 | El-Dessouky S I, El-Nadi Y A, Ahmed I M, et al. Solvent extraction separation of Zn(II), Fe(II), Fe(III) and Cd(II) using tributylphosphate and CYANEX921 in kerosene from chloride medium [J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(2): 177-183. |
48 | Mehdi N, Fereshteh R, Ataollah B, et al. Selective recovery and separation of nickel and vanadium in sulfate media using mixtures of D2EHPA and Cyanex272 [J]. Separation and Purification Technology, 2014, 136(5): 265-273. |
49 | Sui N, Huang K. Separation of rare earths using solvent extraction consisting of three phases [J]. Hydrometallurgy, 2019, 188: 112-122. |
50 | Liu H, Zhang Y M, Huang J, et al. A synergistic approach for separating vanadium and impurities in black shale acid leaching solution using a mixture of Cyanex272 and N235 [J]. Separation and Purification Technology, 2019, 215(15): 335-341. |
51 | Jiang D D, Song N Z, Liao S F, et al. Study on the synergistic extraction of vanadium by mixtures of acidic organophosphorus extractants and primary amine N1923 [J]. Separation and Purification, 2015, 156(17): 835-840. |
52 | Liu Y, Lee M S. Separation of Co and Ni from a chloride leach solutions of laterite ore by solvent extraction with extractant mixtures [J]. Journal of Industrial and Engineering Chemistry, 2015, 28(25): 322-327. |
53 | James E, Quin N, Karin H, et al. Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures [J]. Hydrometallurgy, 2015,157: 298-305. |
54 | Marie C, Hiscox B, Nash K L. Characterization of HDEHP-lanthanide complexes formed in a non-polar organic phase using 31P NMR and ESI-MS [J]. Dalton Transactions, 2012, 41(3): 1054-1064. |
55 | Maryam M, Kerstin F, Lars K, et al. Separation of ND(III), DY(III) and Y(III) by solvent extraction using D2EHPA and EHEHPA [J]. Hydrometallurgy, 2015, 156: 215-224. |
56 | Ataollah B, Fereshteh R, Alireza Z, et al. Selective separation of nickel and cadmium from sulfate solutions of spent nickel-cadmium batteries using mixtures of D2EHPA and Cyanex 302 [J]. Journal of Power, 2014, 247(1): 127-133. |
57 | Shi Q H, Zhang Y M, Huang J, et al. Synergistic solvent extraction of vanadium from leaching solution of stone coal using D2EHPA and PC88A [J]. Separation and Purification Technology, 2017, 181(30): 1-7. |
58 | Zhao Q, Li Y L, Kuang S T, et al. Synergistic extraction of heavy rare earths by mixture of α-aminophosphonic acid HEHAMP and HEHEHP [J]. Journal of Rare Earths, 2019, 37(4): 422-428. |
59 | Hu J S, Zou D, Chen J, et al. A novel synergistic extraction system for the recovery of scandium(III) by Cyanex272 and Cyanex923 in sulfuric acid medium [J]. Separation and Purification Technology, 2020, 233(15): 59-77. |
60 | Hu G P, Chen D S, Wang L N, et al. Extraction of vanadium from chloride solution with high concentration of iron by solvent extraction using D2EHPA [J]. Separation and Purification Technology, 2014, 125(7): 59-65. |
61 | Ma L, Zhao Z Y, Dong Y M, et al. A synergistic extraction strategy by Cyanex572 and Cyanex923 for Th(IV) separation [J]. Separation and Purification Technology, 2018, 191(31): 307-313. |
62 | Ma Y Q, Wang X W, Wang M Y, et al. Separation of V(IV) and Fe(III) from the acid leach solution of stone coal by D2EHPA/TBP [J]. Hydrometallurgy, 2015, 153: 8-45. |
63 | Alexandre S G, Marcel B M. Selection of a synergistic solvent extraction system to remove calcium and magnesium from concentrated nickel sulfate solutions [J]. Hydrometallurgy, 2018, 175: 250-256. |
64 | Shen L, Chen J, Chen L, et al. Extraction of mid-heavy rare earth metal ions from sulphuric acid media by ionic liquid [A336][P507] [J]. Hydrometallurgy, 2016, 161: 152-159. |
65 | Fanny M, Guilhem A, Antoine L, et al. Synthesis of organophosphorus ligands with a central oxygen atom and their applications in solvent extraction [J]. Tetrahedron, 2019, 75(30): 3968-3976. |
66 | Moussa A, Habib S, Safa A A. Solvent extraction of vanadium(IV) with di(2-ethyl-hexyl) phosphoric acid and tri-n-butyl phosphate [J]. Chemical Engineering, 2008, 52(1): 29-33. |
67 | Seyed M R, Ali H, Ali R K. Thermodynamic modeling of the solvent extraction equilibrium for the recovery of vanadium(V) from acidic sulfate solutions using di-(2-ethylhexyl) phosphoric acid [J]. Fluid Phase Equilibria, 2018, 474(25): 20-31. |
[1] | 王学平 付俊杰 张玉辉 龚斌. 平面防冲挡板式分离器冲击区非稳态湍流特性[J]. 过程工程学报, 2022, 22(9): 1253-1261. |
[2] | 张笑天 崔雅茹 王国华 杨泽 赵俊学 王泽 胡爱琳. Na2O/SiO2比对脱铜阳极泥卡尔多炉还原熔炼渣结构和性能的影响[J]. 过程工程学报, 2022, 22(9): 1279-1286. |
[3] | 栾峰 王道广 王均凤 张建伟 崔朋蕾. 碳酸铈在NaCl-H2O体系中的相平衡热力学模型[J]. 过程工程学报, 2022, 22(8): 1103-1114. |
[4] | 张炜 刘文津 张玉明 李家州 岳君容. 高温加压微型流化床内脉冲气射流扰动的数值模拟[J]. 过程工程学报, 2022, 22(7): 944-953. |
[5] | 杨荣旺 陈超 林尧铖 赵宇 赵健 朱江俊 杨士舜. 废钢在气体搅拌容器中运动融化的水模型实验[J]. 过程工程学报, 2022, 22(7): 954-962. |
[6] | 姚文博 张仲君 刘承伟 李育敏 计建炳. 同心圈式超重力旋转床液泛模型[J]. 过程工程学报, 2022, 22(7): 963-969. |
[7] | 张英 王会 次恩达 李晓卿 李建强. 窄粒径分布的液体石蜡相变微胶囊制备及性能表征[J]. 过程工程学报, 2022, 22(6): 745-753. |
[8] | 王倩琳 田文慧 张东胜 王峰 黑旭龙 杨国安. 基于FRAM的化工装置事故情景推演研究[J]. 过程工程学报, 2022, 22(6): 782-791. |
[9] | 张晨 杨诚 李明阳 高翔鹏 于先坤 童雄 龙红明. 地质聚合物基分子筛合成方法及在工业废水处理中的应用研究进展[J]. 过程工程学报, 2022, 22(6): 720-733. |
[10] | 丁桂珍 郑刘根 吴盾 迟文飞. 基于非等温法的废弃环氧树脂电路板热解动力学分析[J]. 过程工程学报, 2022, 22(5): 680-688. |
[11] | 刘宗浩 史清洪. 聚合物接枝对脂肪酶活性及稳定性的影响[J]. 过程工程学报, 2022, 22(4): 506-514. |
[12] | 李燕 郭昌进 丁磊. 磁性离子交换树脂强化水源中有机物去除性能研究[J]. 过程工程学报, 2022, 22(4): 542-551. |
[13] | 孟辉波 王建宝 禹言芳 王宗勇 吴剑华. Q型静态混合器内液滴群分散特性[J]. 过程工程学报, 2022, 22(3): 338-346. |
[14] | 王玮 杨锦 丁凝 陈晓桃 唐壁玉. 轻质双相高熵合金Al20Li20Mg10Sc20Ti30热力学性质的第一性原理研究[J]. 过程工程学报, 2022, 22(3): 403-412. |
[15] | 周业连 邓志银 朱苗勇. 非球形固态夹杂物穿过钢-渣界面行为研究[J]. 过程工程学报, 2022, 22(2): 222-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||