欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (11): 1574-1583.DOI: 10.12034/j.issn.1009-606X.221304

• 研究论文 • 上一篇    下一篇

介质阻挡放电低温等离子体灭活铜绿微囊藻的实验研究

蒲思川1,2*, 师兰婷1, 贺佳1, 边娜3, 刘钊1
  

  1. 1. 西安工程大学
    2. 西安电力高等专科学校
  • 收稿日期:2021-09-23 修回日期:2022-01-22 出版日期:2022-11-28 发布日期:2022-11-28
  • 通讯作者: 蒲思川 scpu@xpu.edu.cn
  • 作者简介:蒲思川(1983-),女,河北省保定市人,博士,讲师,环境工程专业,E-mail: scpu@xpu.edu.cn.
  • 基金资助:
    陕西省教育厅专项科研计划项目;陕西省教育厅专项科研计划项目;陕西省油气田环境污染控制技术与储层保护重点实验室开放课题;西安工程大学博士科研启动基金项目

Study on inactivation of Microcystis aeruginosa by dielectric barrier discharge low-temperature plasma

Sichuan PU1,2*,  Lanting SHI1,  Jia HE1,  Na BIAN3,  Zhao LIU1   

  1. 1. School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China

    2. College of Chemistry & Chemical Engineering, Shaanxi Province Key Laboratory for Environmental Pollution Control Technology and Reservoir Protection of Oil and Gas Field, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China

    3. Xi'an Electric Power College, Xi'an, Shaanxi 710032, China

  • Received:2021-09-23 Revised:2022-01-22 Online:2022-11-28 Published:2022-11-28

摘要: 采用介质阻挡放电(Dielectric Barrier Discharge, DBD)低温等离子体对铜绿微囊藻进行灭活研究,考察了电气参数、场结构参数及铜绿微囊藻溶液液相体系因素等放电条件对其灭活规律的影响。利用多种分析方法[如丙酮提取分光光度法、电导率测定、扫描电镜(SEM)和高效液相色谱(HPLC)]检验DBD低温等离子体对铜绿微囊藻的灭活效果。实验结果表明,放电条件对铜绿微囊藻灭活率有极大影响,在最佳条件下(放电电压160 V,放电电流0.6 A,介质间距4 mm,溶液初始OD值0.2,pH值为弱碱性)放电时间5 min,铜绿微囊藻的灭活率可达90%以上。经DBD低温等离子体放电处理后,藻液颜色由鲜绿色→淡绿色→浅黄色→无色,藻细胞的Chl-a含量大幅减少,光合作用能力被抑制,藻细胞的生长受阻。扫描电镜结果显示,藻细胞在放电处理前饱满、完整;而放电后的藻细胞细胞结构破坏严重,细胞膜破裂,细胞内容物泄漏,仅存少量细胞残骸。放电处理后的藻细胞电解质渗出率增大,细胞膜结构受到严重的破坏导致其通透性增大,细胞内容物外泄。DBD低温等离子体灭活铜绿微囊藻的过程中,藻毒素的含量随放电时间先增加后减小。在最佳放电条件下,放电5 min后,不仅完全降解了藻细胞破裂释放出的藻毒素,去除率达100%,还对原有水体中的藻毒素进行了降解。上述实验结果表明,DBD低温等离子体技术是一种较好的去除铜绿微囊藻的方法。该方法不仅可抑制藻细胞的增殖,造成藻细胞大量死亡,而且不会造成水体的二次污染,具有较好的应用价值。

关键词: 低温等离子体, 铜绿微囊藻, 灭活效果, 理化性能

Abstract: Dielectric barrier discharge (DBD) low temperature plasma was used to inactivate Microcystis aeruginosa. The effects of DBD low temperature plasma discharge conditions on Microcystis aeruginosa inactivation were investigated,such as discharge parameters, field structure parameters and solution liquid phase system factors, etc. Several analytical methods [e.g., acetone extraction spectrophotometry, conductivity measurement, scanning electron microscopy (SEM) and high performance liquid chromatography (HPLC)] were used to test the inactivation effect of Microcystis aeruginosa. The experimental results show that the discharge conditions have a great influence on the inactivation rate. Under the optimum conditions (discharge voltage 160 V, discharge current 0.63 A, dielectric spacing 4 mm, initial OD value of solution 0.2, pH value is weakly alkaline), discharge time 5 min, the inactivation rate of Microcystis aeruginosa can reach more than 90%. After discharge treatment, the color of Microcystis aeruginosa solution changed from bright green→light green→light yellow→colorless. The Chl-a content of Microcystis aeruginosa decreased significantly. The photosynthetic ability was inhibited, and the growth of Microcystis aeruginosa was blocked. SEM results showed that the algal cells were full and complete before discharge treatment. After discharge treatment, the cell structure of Microcystis aeruginosa was seriously damaged. The cell membrane was broken, and the cell content was leaked, which only left a small amount of cell debris. After discharge treatment, the electrolyte exudation rate of Microcystis aeruginosa increased. The cell membrane structure was seriously damaged, resulting in the increase of permeability and the leakage of cell contents. In the process of Microcystis aeruginosa inactivation, the content of microcystins first increased and then decreased with the discharge time. Under the optimum discharge conditions, after 5 min discharge treatment, not only the microcystins released by the rupture of Microcystis aeruginosa were completely degraded, whose removal rate was 100%, but also the microcystins in the original water were degraded. The above experimental results indicate that DBD low temperature plasma technology is a better method to remove Microcystis aeruginosa. This method can not only inhibit the proliferation of Microcystis aeruginosa, which has remarkable inactivation effect, but also will not cause secondary pollution of water body. So this method has good application value.

Key words: low-temperature plasma, Microcystis aeruginosa, inactivation effect, physicochemical properties