欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (2): 173-187.DOI: 10.12034/j.issn.1009-606X.222083

• 综述 • 上一篇    下一篇

钠离子电池负极材料的储钠机制及性能研究进展

韩诚1,2, 武少杰1,2, 吴朝阳1,2, 李明阳1,2, 龙红明1,2, 高翔鹏1,2*
  

  1. 1. 安徽工业大学冶金工程学院,安徽 马鞍山 243002 2. 安徽工业大学冶金减排与资源综合利用教育部重点实验室,安徽 马鞍山 243002
  • 收稿日期:2022-03-15 修回日期:2022-04-27 出版日期:2023-02-28 发布日期:2023-03-01
  • 通讯作者: 高翔鹏 gxp1992@ahut.edu.cn
  • 作者简介:韩诚,硕士研究生,研究方向为材料科学与工程,E-mail: 1466334383@qq.com;通讯联系人,高翔鹏,副教授,博士生导师,研究方向为有机功能材料及资源循环利用,E-mail: gxp1992@ahut.edu.cn
  • 基金资助:
    国家自然科学基金

Research progress on sodium storage mechanism and performance of anode materials for sodium-ion batteries

Cheng HAN1,2,  Shaojie WU1,2,  Chaoyang WU1,2,  Mingyang LI1,2,  Hongming LONG1,2, Xiangpeng GAO1,2*   

  1. 1. School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, China 2. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Ma'anshan, Anhui 243002, China
  • Received:2022-03-15 Revised:2022-04-27 Online:2023-02-28 Published:2023-03-01

摘要: 绿色能源的应用,促使着电化学储能与转换技术的飞速发展。锂离子电池作为储能领域最成功的二次离子电池之一,已被应用于各种电子产品中,但是由于锂资源短缺造成锂离子电池的成本增加,限制了其在大规模储能设备领域的应用。因此,寻找价格低廉、性能优异的二次离子电池是当下的研究热门之一。钠离子电池不仅拥有和锂离子电池相似的工作原理,而且还具有成本低、资源丰度大和可逆容量高的特点,有望成功地代替锂离子电池而应用于商业化生产。本工作主要综述了钠离子电池负极材料的性能研究进展,首先根据钠离子在负极材料存储方式不同,分析归纳了负极材料的插层反应、合金化反应和转换反应三种储钠机制,然后介绍了负极材料的结构修改、元素掺杂和材料复合三种改性方式,随后重点介绍了碳基材料、钛基材料、合金类材料、转换类材料和有机材料等几种关键的钠离子电池负极材料的电化学性能和所面临的问题,最后,以实际生产和工业应用为基础,展望了钠离子电池负极材料的研究方向。

关键词: 清洁能源, 钠离子电池, 负极材料, 储钠机制, 改性

Abstract: The massive use of fossil fuels is bound to cause irreversible damage to the global ecological environment. New energy sources such as solar, wind, and tidal have the advantages of being clean, non-hazardous, and renewable, and can be used to replace fossil fuels to alleviate the environmental crisis. The development and utilization of green energy have led to the rapid development of electrochemical energy storage and conversion technologies to store clean and renewable energy in the grid. Lithium-ion batteries, one of the most successful secondary ion batteries in energy storage, have been used in various electronic products, but expensive and scarce raw material resources limit their applications in the field of large-scale energy storage equipment. Therefore, the search for inexpensive secondary ion batteries with excellent performance is one of the hot research topics nowadays. As a new type of secondary ion battery, sodium-ion battery not only has a similar working principle as a lithium-ion battery but also features low cost, high resource abundance, and high reversible capacity. The extensive exploration by researchers is expected to make it a successful alternative to lithium-ion batteries for commercial production. This work mainly reviews the progress of the research on the performance of sodium-ion battery anode materials, firstly, the three mechanisms of sodium storage in the anode materials, namely the intercalation reaction, alloying reaction, and conversion reaction, are analyzed and summarized according to the different ways of sodium ion storage in the anode materials. Then, according to the performance of sodium-ion battery anode materials, three common modifications of anode materials are summarized: structural modification, elemental doping, and material compounding, and the electrochemical properties of anode materials before and after modification are compared. Then, the research status and problems faced by several key anode materials for sodium-ion batteries, such as carbon-based materials, titanium-based materials, alloy-based materials, conversion-based materials, and organic materials, are highlighted. Finally, the research directions of sodium-ion battery anode materials are prospected based on the actual production and industrial applications.

Key words: clean energy, sodium ion battery, anode material, sodium storage mechanism, modification