欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2022, Vol. 22 ›› Issue (11): 1547-1557.DOI: 10.12034/j.issn.1009-606X.222121

• 研究论文 • 上一篇    下一篇

天然气储气库往复式压缩机异常磨损分析和控制

郑思佳1*, 李雪源2, 程华1, 雷思罗2, 陈敬东1, 王峰1, 陈家文2, 黄兴鸿3, 钟林4
  

  1. 1. 中石油西南油气田分公司集输工程技术研究所,四川 成都 610041 2. 中石油西南油气田分公司储气库管理处,重庆 401121 3. 中石油西南油气田分公司气田开发管理部,四川 成都 610084 4. 西南石油大学机电工程学院,四川 成都 610500
  • 收稿日期:2022-04-07 修回日期:2022-07-05 出版日期:2022-11-28 发布日期:2022-11-28
  • 通讯作者: 郑思佳 373144375@qq.com
  • 作者简介:郑思佳(1984-),男,陕西省西安市人,博士后,高级工程师,主要从事天然气中颗粒物检测及工艺设备冲蚀磨损方面的研究,E-mail: wangyizhengsijia@163.com.
  • 基金资助:
    油气装备摩擦副仿生表面织构抗磨减阻机理与设计理论研究;基于分子动力学的复合钻头滑动轴承纳米织构表面动态摩擦学行为研究

Analysis and control of abnormal wear of reciprocating compressor in natural gas underground storage cavern

Sijia ZHENG1*,  Xueyuan LI2,  Hua CHENG1,  Siluo LEI2,  Jingdong CHEN1,  Feng WANG1,  #br# Jiawen CHEN2,  Xinghong HUANG3,  Lin ZHONG4   

  1. 1. Gathering and Transmission Technology Research Institute of Southwest Oil & Gas Field Company of CNPC, Chengdu, Sichuan 610041, China 2. Gas Storage Management Division of Southwest Oil & Gas Field Company of CNPC, Chongqing 401121, China 3. Gas Field Develop Department of Southwest Oil & Gas Field Company of CNPC, Chengdu, Sichuan 610084, China 4. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2022-04-07 Revised:2022-07-05 Online:2022-11-28 Published:2022-11-28

摘要: “十四五”期间全国天然气管网已形成了互联互通,但管输气质更加复杂,一定量的粉尘广泛存在于天然气管道中,导致储气库往复式压缩机压缩缸发生异常磨损。基于切向撞击能量模型,结合现场测量和计算流体力学动网格方法,明确了压缩缸磨损特性。结果表明,压缩缸内润滑油与粉尘混合后形成研磨膏,随着粉尘质量浓度从0.01%增至3.00%,研磨膏黏度从4.51×105 mPa?s增加至1.27×106 mPa?s,密度从890 kg/m3增至980 kg/m3;压缩缸磨损多发生在其12点和6点钟方向,当活塞在行程的两侧时,压缩缸内剪切应力和磨损速率最小,当活塞位于行程中点时,压缩缸内剪切应力和磨损速率最大;发现对于每1000 h运行不需修复压缩缸(磨损量小于0.13 mm),粉尘质量浓度宜控制在0.60%以下,每5000 h和每10 000 h运行不需更换压缩缸(磨损量小于1.16 mm),粉尘质量浓度应分别控制在1.30%和0.40%以下;当粉尘质量浓度为0.01%时,磨损速率随润滑油黏度降低而降低,当粉尘质量浓度为0.51%和1.00%时,当润滑油黏度在2.59×105, 2.21×105, 1.97×105 mPa?s时,计算磨损速率随黏度降低陡然增大。

关键词: 天然气, 压缩机, 磨损, 数值分析, 实验验证, 预测

Abstract: During China's 14th five-year plan period, the national natural gas pipeline network has been interconnected, and the gas quality became more complex. A certain amount of dust particles widely spread in the natural gas pipeline, and led to abnormal wear of the reciprocating compressor's cylinder in the underground storage cavern. Based on the SIEM (Shear Impact Energy Model), combined with field measurement and moving-grid method of computational fluid dynamics, the wear characteristics of the compression cylinder are well demonstrated. The results show that the lubricating oil is mixed with dust particles to form grinding paste. With the increase of particle mass concentration from 0.01% to 3.00%, the viscosity of grinding paste increases from 4.51×105 mPa?s to 1.27×106 mPa?s, and the density increases from 890 kg/m3 to 980 kg/m3. The abnormal wear often occurs at 12 o'clock and 6 o'clock of the compression cylinder. When the piston is in the midpoint of the stroke, the wall shear rate as well as the wear rate are the highest. When the piston is in the two end points of the stroke, the wall shear rate as well as the wear rate are the slightest. For every 1000 hours of operation without repairing the cylinder, the particle mass concentration should be controlled below 0.60%. For every 5000 hours and 10 000 hours of operation without replacing the cylinder, and the particle mass concentration should be controlled below 1.30% and 0.40% respectively. When the particle mass concentration is 0.01%, the wear rate decreases with the decrease of lubricating oil viscosity. When the particle mass concentrations are 0.51% and 1.00%, the lubricating oil viscosities are 2.59×105, 2.21×105 and 1.97×105 mPa?s, the calculated wear rate increases sharply with decrease of lubricating oil viscosity.

Key words: natural gas, compressor, wear, numerical analysis, experimental validation, prediction