欢迎访问过程工程学报, 今天是

过程工程学报 ›› 2023, Vol. 23 ›› Issue (4): 602-615.DOI: 10.12034/j.issn.1009-606X.222142

• 研究论文 • 上一篇    下一篇

离子液体阳离子特性对铂基氧还原电催化剂性能的影响

白烁1,2, 王昊2,3, 许光文1, 杨冰冰2,5, 康振烨4, 崔佳瑶2,5, 李晨浩2, 陈庆军6*, 刘艳荣2,3*
  

  1. 1. 沈阳化工大学化学工程学院,能源与产业化工研究院,辽宁 沈阳 110142 2. 中国科学院过程工程研究所离子液体清洁过程北京市重点实验室,绿色过程与工程重点实验室, 多相复杂系统国家重点实验室, 北京 100190 3. 郑州新兴产业技术研究院,河南 郑州 450001 4. 海南大学化学工程与技术学院,南海海洋资源利用国家重点实验室,海南省精细化工重点实验室,海南 海口 570228 5. 中国科学院大学化学工程学院,北京 100049 6. 中国科学院赣江创新研究院,江西 赣州 341000
  • 收稿日期:2022-04-22 修回日期:2022-05-21 出版日期:2023-04-28 发布日期:2023-05-04
  • 通讯作者: 刘艳荣 yrliu@ipe.ac.cn
  • 作者简介:白烁,硕士研究生,化学工程与技术专业,E-mail: baishuo2020@ipe.ac.cn;通讯联系人,刘艳荣,项目研究员,氢能“制储用”关键技术及器件研究,E-mail: yrliu@ipe.ac.cn;陈庆军,研究员,研究方向为氢燃料电池、电解水及电催化,E-mail: qjchen@gia.cas.cn
  • 基金资助:
    国家自然科学基金;河南省重点研发计划;中科院DNL合作基金;北京市自然科学基金

Effect of cationic properties of ionic liquids on the performance of platinum-based oxygen reduction electrocatalysts

Shuo BAI1,2,  Hao WANG2,3,  Guangwen XU1,  Bingbing YANG2,5,  Zhenye KANG4,  Jiayao CUI2,5,  Chenhao LI2,  Qingjun CHEN6*,  Yanrong LIU2,3*   

  1. LI2, Qingjun CHEN6*, Yanrong LIU2,3* 1. Institute of Industrial Chemistry and Energy Technology, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China 2. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, Henan 450001, China 4. School of Chemical Engineering and Technology, State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan Province Key Laboratory of Fine Chemicals, Hainan University, Haikou, Hainan 570228, China 5. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 6. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
  • Received:2022-04-22 Revised:2022-05-21 Online:2023-04-28 Published:2023-05-04
  • Contact: YanRong Liu yrliu@ipe.ac.cn

摘要: 离子液体(ILs)改性固体催化剂是一种构筑高效电催化界面的方法。为了研究ILs阳离子在催化剂中Pt表面对燃料电池中氧还原反应(ORR)性能的影响,本研究自主合成了两种疏水质子型ILs ([EIM][NTf2], [BIM][NTf2])和两种疏水非质子型ILs ([EMIM][NTf2], [BMIM][NTf2]),并对商业化Pt/C进行改性。在本研究采用的咪唑类疏水ILs中,质子型ILs改性催化剂的ORR活性均高于非质子型ILs改性催化剂,其中,由1-丁基咪唑双(三氟甲磺酰)亚胺改性后的催化剂([BIM][NTf2]@Pt/C)活性最高。在酸性半电池中ORR半波电位高达0.913 V (vs. RHE),质量活性提升至商业化Pt/C的1.73倍,比活性提升至商业化Pt/C的3倍,同时达到5000圈循环后半波电位仅下降12 mV,性能仍高于商业化Pt/C。进一步材料表征和电化学测试表明,[BIM][NTf2]@Pt/C电催化活性的增强归因于该ILs可增多Pt表面参与反应活性位点、强化Pt表面质子及质量传递,并可有效抑制Pt纳米颗粒溶解,从而起到了增强ORR活性及稳定性的作用。本研究深化了对ILs@Pt界面协同电催化机理的认识,为设计下一代高效燃料电池催化剂提供了理论依据。

关键词: 氧还原反应, 离子液体, Pt族催化剂, 电催化界面, 强化传质

Abstract: Ionic liquids (ILs) modified solid catalysts are considered to be an effective method for constructing efficient electrocatalytic interface. In order to investigate the cationic impacts of ILs on Pt surface towards the oxygen reduction reaction (ORR) performance, herein we selected and synthesized [NTf2]- based two hydrophobic protonic ILs ([EIM][NTf2], [BIM][NTf2]) and two hydrophobic non-protonic ILs ([EMIM][NTf2], [BMIM][NTf2]), and the synthesized ILs were used to modify the commercial Pt/C catalyst surface. Among the imidazolium-based hydrophobic ILs used in this study, the ORR activities of the protonic ILs modified catalysts were all higher than those of the non-protonic ILs modified catalysts, with the catalyst modified by 1-butylimidazolium bis(trifluoromethanesulfonyl)imide ([BIM][NTf2]@Pt/C) having the highest activity. The ORR half-wave potential in the acidic half-cell is as high as 0.913 V (vs. RHE), increasing the mass activity to 1.73 times than that of commercial Pt/C and the specific activity to 3 times than that of commercial Pt/C, while reaching a half-wave potential drop of only 12 mV after 5000 cycles, the performance is still higher than that of commercial Pt/C. Further material characterization and electrochemical tests were performed on the catalysts showed that the enhanced electrocatalytic activity of [BIM][NTf2]@Pt/C was attributed to the increased number of active sites on the Pt surface from the ILs modification, which enhanced plasmon and mass transfer on the Pt surface, and effective inhibition of Pt nanoparticle solubilization, thus enhancing the ORR activity and stability. This study deepens the understanding of the synergistic electrocatalytic mechanism at the ILs@Pt interface and provides a theoretical basis for the design of next-generation high-efficiency fuel cell catalysts.

Key words: oxygen reduction reaction, ionic liquids, platinum group metal catalysts, electrocatalytic interfaces, mass transfer enhancement