过程工程学报 ›› 2024, Vol. 24 ›› Issue (5): 580-588.DOI: 10.12034/j.issn.1009-606X.223074
周菲1,2, 兰昊1,2,3*, 孙小明2,3, 张会丰1,2,3, 孙勇辉3, 杜令忠3, 张伟刚1,2,3
Fei ZHOU1,2, Hao LAN1,2,3*, Xiaoming SUN2,3, Huifeng ZHANG1,2,3, Yonghui SUN3, #br# Lingzhong DU3, Weigang ZHANG1,2,3
摘要: 燃气涡轮发动机推重比的提高依赖于发动机工作温度的提升。目前,寻找比传统YSZ(氧化钇部分稳定的氧化锆)材料耐受温度更高,与镍基基体热膨胀系数匹配的新型热障涂层陶瓷材料是首要任务。采用水热法合成一系列氧化镱掺杂氧化铪(YbSH)纳米粉体,并通过固相烧结制备出YbSH陶瓷,分析了YbSH粉体与陶瓷的微观结构变化规律与相稳定机制,测试立方相结构YbSH陶瓷的高温相结构稳定性与热膨胀系数。利用X射线衍射(XRD)、拉曼光谱(Raman)和透射电子显微镜(TEM)分析Yb2O3掺杂HfO2粉体与陶瓷的微观结构变化规律与相稳定机制;并借助热重-差热分析仪(DSC-TG)、热膨胀分析仪(TMA)测试立方相结构YbSH陶瓷的高温相结构稳定性与热膨胀系数。结果表明,水热合成粉体的粒径在10 nm以下,分布均一,多数呈正方体形状,结晶状态好,制备的烧结陶瓷致密度可达95%以上;晶体学分析得出,Yb(III)离子通过取代Hf(IV)离子的位置,使氧化铪发生晶格畸变,以置换固溶的方式使HfO2的空间群从单斜相的P21/c畸变到萤石立方相Fmˉ3m。氧化镱掺杂量的增多使氧化铪逐渐失去单斜相结构,12 mol/mol以上的氧化镱的掺杂可使氧化铪成为完全立方相,通过使阳离子网络的膨胀和氧空位的产生,有效缓解氧过度拥挤的情况,使立方萤石结构的HfO2稳定在室温下。通过高温热处理和监测升温过程中YbSH的热量变化,该立方相结构在室温至1500℃表现出良好的稳定性;YbSH陶瓷热膨胀系数随着立方相含量的增多从6.016×10-6℃-1增大至10.14×10-6℃-1 (25~1500℃),其中20 mol/mol氧化镱掺杂的YbSH陶瓷的热膨胀系数可达10.5×10-6℃-1 (1000~1200℃),比纯氧化铪热膨胀系数提高67.22%。