过程工程学报 ›› 2023, Vol. 23 ›› Issue (2): 291-300.DOI: 10.12034/j.issn.1009-606X.222017
孙倩1,2, 张会丰1,3, 黄传兵1,3, 于守泉1,3, 杨诗瑞4, 房师阁4, 张伟刚1,2,3*
Qian SUN1,2, Huifeng ZHANG1,3, Chuanbing HUANG1,3, Shouquan YU1,3, Shirui YANG4, Shige FANG4, Weigang ZHANG1,2,3*
摘要: 为提高C/C复合材料在2000℃以上有氧环境中的抗氧化烧蚀性能,本研究采用ZrB2浆料浸渍、ZrC-SiC前驱体浸渍裂解与Si-Zr10共晶合金反应熔渗复合工艺制备了C/C-SiC-ZrB2-ZrC复合材料,细致研究了复合材料在熔渗过程中的基体微观结构演变机理及其力学性能和抗烧蚀性能。结果表明,在反应熔渗结束后的降温阶段,部分ZrC陶瓷与残余Si熔体通过原位固-液反应转化为ZrSi2和SiC,生成的亚微米级SiC颗粒均匀镶嵌于ZrC-ZrSi2二元混合物中,最终形成ZrC-ZrSi2-SiC三相混合微区。制备的C/C-SiC-ZrB2-ZrC复合材料密度为3.18 g/cm3,开孔率为2.77%,其弯曲强度和弯曲模量分别为121.46±13.77 MPa和21.78±5.56 GPa。在其断口处能观察到较长且较多的单丝纤维拔出以及明显的界面脱黏,这表明复合材料的失效方式为韧性断裂。经2000℃,300 s的大气等离子体烧蚀,复合材料表现出优良的抗超高温烧蚀性能(质量烧蚀率和线烧蚀率分别为1.37×10-3 g/s和3.43×10-3 mm/s)。分析发现,烧蚀中心形成了独特的双层梯度氧化物结构,底部的ZrO2层可阻挡外部热量向材料内部基体的传递,表面由固相ZrO2颗粒和液相富SiO2的SiO2-ZrO2熔体组成的复合氧化层既能抵御高速气流的机械冲刷,又能抑制氧气向内部基体的扩散。